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i Note

Full implementation available at GitHub - ML from Scratch



https://github.com/bhanuprasanna2001/ML_from_scratch

Jacobi Eigenvalue Method

Eigen Values and Eigen Vectors

A non-zero column vector v is called the eigen vector of a Matrix A with the eigen value
A, if:

Av = )\v

Matrix Types

¢« Dense matrix: A type of matrix where most of elements are non-zero
e Sparse matrix: A type of matrix where most of the elements are zero

The Jacobi Method

The Jacobi method iteratively applies rotations to zero out off-diagonal elements until the
matrix becomes diagonal.

Algorithm Steps

Find the largest off-diagonal element (for ij where i # j)
Compute rotation angle 6

Apply rotation to matrix A

Update eigenvector matrix V'

Repeat until convergence
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Rotation Matrix

Place the rotation matrix at coordinates (3, j):

S<—-{COSQ ——sulﬁ]

" |sin® cos#
Then: B= STAS

def largest_non_diagonal_element(A):
max = -1 * np.inf
cord = (0, 0)

for i in range(A.shape[0]):
for j in range(A.shape[1]):
if i 1= §:
if np.abs(A[i][j]) > max:
max = np.abs(A[i][j1)
cord = (i, j)

return max, cord

def find_theta(A, i, j):
if A[i, il == A[j, jl:
return (np.pi / 4) * np.sign(A[i, jl)
return 0.5 * np.arctan((2 * A[i][j]1) / (A[i][i] - A[j1[31))

def apply_rotation_to_sym(A, i, j, theta):
S = np.identity(A.shapel[0])

S[i]1[i] = np.cos(theta)
S[il[j] = -1 * np.sin(theta)
S[j1[i] = np.sin(theta)
S[j1[j] = np.cos(theta)

B=S.T@AG®@S
return B, S
def jacobi_eigenvalue(A, max_iter=1000, tol=1e-10):

n = A.shape[0]
A = A.copyQ)



V = np.eye(n)

for iteration in range(max_iter):
max_val, (p, q) = largest_non_diagonal_element (A)

if np.abs(max_val) < tol:
print (f"Converged in {iteration} iterations")
break

theta = find_theta(A, p, q)
A, S = apply_rotation_to_sym(A, p, q, theta)
V=Vaes

eigenvalues = np.diag(A)
return eigenvalues, V



Singular Value Decomposition (SVD)

What is SVD?

SVD decomposes a matrix A into three matrices:

A=UxVT

Where: - U is m x m (left singular vectors) - ¥ is m x n diagonal matrix (singular values) - V'
is n x n (right singular vectors)

Traditional Method

1. Find U: Compute AAT, then solve (AAT — X\I) = 0 to find eigenvalues, then find
eigenvectors

2. Find V: Compute AT A, then solve similarly

3. Build ¥: Diagonal matrix with \//\7

Important Detail

For U, column vectors are computed as:

U, = L (av))

1
0;

where V; is the i-th column vector of V.

eig_a_at = np.linalg.eig(A @ A.T) # Represents U
eig_at_a = np.linalg.eig(A.T @ A) # Represents V
idx_u = np.argsort(eig_a_at.eigenvalues) [::-1]

idx_v = np.argsort(eig_at_a.eigenvalues) [::-1]

sorted_eigenvalues_u = eig_a_at.eigenvalues[idx_u]



sorted_eigenvectors_v = eig_at_a.eigenvectors[:, idx_v]

sigma_mat = np.eye(m, n)
for i in range(min(m, n)):
sigma_mat[i] [i] = sorted_eigenvalues_ul[i] ** 0.5

V = sorted_eigenvectors_v
np.zeros_like(sorted_eigenvectors_u)

(=]
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for i in range(m):
Ul:, i1 = (A @ V[:, i]) / sigma_mat[i, i]

Image Compression with Rank-k Approximation

Why it Works

Full SVD:

T
T

A= oyu vl + oguavl + .+ ou,v
Rank-k approximation:
Ay, = oyupvl + L+ opuol

Why this works:

1. Singular values are sorted descending: o, > 0y > 03 > ...

2. The first few singular values are much larger than later ones
3. They capture the most important patterns in the data

4. Later terms add tiny details

For Images

Keep just k = 50 singular values instead of 1000
o Storage: (m X k+ k+ k x n) instead of (m x n)
o A, =Ul:,: k|- S k,: k] - V[ k, |7

o Compression ratio: huge for large images

from sklearn.datasets import load_sample_image
img = load_sample_image('flower.jpg')
gray_img = np.mean(img, axis=2).astype(np.uint8)

U, sigma, V = np.linalg.svd(gray_img)



k = 60 # Number of singular values to keep
sigma_k = np.diag(sigmal:k])

Ak =U[:, :k] @ sigma_k @ V[:k, :]

A_k_uint8 = np.clip(A_k, 0, 255).astype(np.uint8)



Principal Component Analysis (PCA)

The Difference Between SVD and PCA

e SVD: Finds the best rank-k approximation that minimizes reconstruction error
e PCA: Finds k directions that maximize captured variance

The PCA core idea is to find directions where the variance (spread) is largest.

Algorithm Steps

Calculate mean: For each column (feature), find the mean

Center the data: Subtract mean from each feature to get mean of 0
Compute Covariance matrix: Find how features spread and relate
Find eigenvalues and eigenvectors of covariance matrix

Order eigenvectors by eigenvalues (descending)

Select top k eigenvectors

Transform: 7 = X creqd - Vi

N T W

Why Center the Data?

e Subtracting ensures no single feature dominates due to its scale
o Makes all features contribute equally
o We don’t care about position (where the data is), only about its shape/spread

def pca(X, n_components=5):
if n_components > X.shape[1]:
print (f"PCA Not possible: n_components must be less than {X.shape[1]}.")
return np.array([])

X = X.copyQ

# Step 1: Compute mean
X mean = X.mean(axis=0)
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# Step 2: Center the data
X = (X - X_mean)

# Step 3: Covariance matrix
X_cov = np.cov(X.T)

# Step 4: Eigen decomposition
eig_values, eig_vectors = jacobi_eigenvalue(X_cov)

# Step 5: Sort by eigenvalues
idx_eigval = np.argsort(eig_values) [::-1]
eig_values = eig_values[idx_eigvall

eig_vectors = eig_vectors[:, idx_eigvall]

# Step 6: Select top k eigenvectors
V_k = eig_vectors[:, :n_components]

# Step 7: Transform
Z =X 0V_k

return Z

Note: The number of components k cannot be larger than the number of eigenvectors (number
of features).
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