
Support Vector Machine from Scratch

Bhanu Prasanna Koppolu



Table of contents

Support Vector Machine (SVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Core Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Why Maximum Margin? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Support Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Hard Margin SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Primal Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Dual Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Problem with Hard Margin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Soft Margin SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Primal Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Dual Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Decision Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Kernel Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Understanding C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Support Vector Regression (SVR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Primal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Linear SVC Implementation (Sub-Gradient Descent) . . . . . . . . . . . . . . . . . . 7
Linear SVR Implementation (Sub-Gradient Descent) . . . . . . . . . . . . . . . . . . 8

2



Note

Full implementation available at GitHub - ML from Scratch

Support Vector Machine (SVM)

You thought SGD is Stochastic Gradient Descent? No, it is Sub Gradient Descent.

Core Idea

The main idea of SVM is to find an optimal hyperplane that separates classes with the max-
imum margin.

The margin is nothing but the distance from the hyperplane where data points of both classes
must be at a wider distance.

SVM Goal: Maximizes the margin distance to nearest points from each class.

Margin: Distance between hyperplane and nearest points.

Why Maximum Margin?

• Robustness to noise
• Proven to reduce overfitting
• Generalizes better to unseen data

In 2D it is a line, 3D it is a plane, n-D it is:

w𝑇 x + 𝑏 = 0

Support Vectors

The data points closest to the hyperplane (that define the margin).

Classifier

𝑓(x) = sign(w𝑇 x + 𝑏)

Where the sign is the Signum function: 𝑓(𝑥) < 0 ⇒ −1, 𝑓(𝑥) = 0 ⇒ 0, 𝑓(𝑥) > 0 ⇒ +1

3

https://github.com/bhanuprasanna2001/ML_from_scratch


Hard Margin SVM

The hard margin concept is for linear SVM where we can’t allow any misclassifications. The
decision boundary must perfectly divide all data points.

The margin is:
𝛾 = 1

‖w‖

Primal Optimization

min
w,𝑏

1
2‖w‖2

subject to:
𝑦𝑖(w𝑇 x𝑖 + 𝑏) ≥ 1 ∀𝑖

This is a convex quadratic optimization with linear constraints.

Dual Formulation

Using Lagrangian multipliers:

max
𝛼

𝑊(𝛼) =
𝑚

∑
𝑖=1

𝛼𝑖 − 1
2

𝑚
∑
𝑖=1

𝑚
∑
𝑗=1

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗x𝑇
𝑖 x𝑗

subject to:
𝛼𝑖 ≥ 0 ∀𝑖
𝑚

∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0

The 𝛼𝑖 is a Lagrange multiplier for each constraint 𝑔𝑖(w, 𝑏) ≤ 0 where:

𝑔𝑖(w, 𝑏) = 1 − 𝑦𝑖(w𝑇 x𝑖 + 𝑏) ≤ 0

Problem with Hard Margin

The inequality constraints demand every single training data point must be classified cor-
rectly and must lie outside the margin or exactly on its boundary. There is no tolerance for
misclassification or points falling within the margin.

4



Soft Margin SVM

We allow some tolerance to the classes to be misclassified. We introduce slack variables 𝜉𝑖 and
regularization parameter 𝐶.

Primal Optimization

min
w,𝑏,{𝜉𝑖}

1
2‖w‖2 + 𝐶

𝑚
∑
𝑖=1

𝜉𝑖

subject to:
𝑦𝑖(w𝑇 x𝑖 + 𝑏) ≥ 1 − 𝜉𝑖

𝜉𝑖 ≥ 0

Dual Formulation

w =
𝑚

∑
𝑖=1

𝛼𝑖𝑦𝑖x𝑖

max
𝛼

𝑊(𝛼) =
𝑚

∑
𝑖=1

𝛼𝑖 − 1
2

𝑚
∑
𝑖=1

𝑚
∑
𝑗=1

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗x𝑇
𝑖 x𝑗

subject to:
0 ≤ 𝛼𝑖 ≤ 𝐶
𝑚

∑
𝑖=1

𝛼𝑖𝑦𝑖 = 0

The support vectors are those with 𝛼𝑖 > 0. The misclassified or margin-violating ones often
have 𝛼𝑖 = 𝐶.

Decision Function

𝑓(x) =
𝑚

∑
𝑖=1

𝛼𝑖𝑦𝑖x𝑇
𝑖 x + 𝑏

5



Kernel Trick

The kernel trick maps our inner products to higher dimensions to divide the data better:

x𝑇
𝑖 x𝑗 ⇒ 𝐾(x𝑖, x𝑗)

The dual becomes:
𝑊(𝛼) =

𝑚
∑
𝑖=1

𝛼𝑖 − 1
2

𝑚
∑
𝑖=1

𝑚
∑
𝑗=1

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾(x𝑖, x𝑗)

The classifier:

𝑓(x) = sign (
𝑚

∑
𝑖=1

𝛼𝑖𝑦𝑖𝐾(x𝑖, x) + 𝑏)

Understanding C

𝐶 is a regularization hyperparameter that controls the trade-off between:

1. Margin width (‖w‖2)
2. Training error (slack penalty via ∑ 𝜉𝑖)

Small C (e.g., 0.01) Large C (e.g., 1000)
Wider margin Tighter margin
More regularization Less regularization
Better generalization Higher training accuracy
More violations allowed Risk of overfitting
Lower training accuracy Sensitive to outliers
Use for noisy data, many outliers Use for clean data, confident labels

Support Vector Regression (SVR)

The concept for SVR is the same, but we use 2 slack variables and a new loss function:
epsilon-insensitive loss which acts as a tube.

6



Primal

min
w,𝑏,𝜉,𝜉∗

1
2‖w‖2 + 𝐶

𝑚
∑
𝑖=1

(𝜉𝑖 + 𝜉∗
𝑖 )

subject to:
𝑦𝑖 − (w𝑇 x𝑖 + 𝑏) ≤ 𝜖 + 𝜉𝑖

(w𝑇 x𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜖 + 𝜉∗
𝑖

𝜉𝑖, 𝜉∗
𝑖 ≥ 0

Dual

max
𝛼,𝛼∗

−1
2 ∑

𝑖,𝑗
(𝛼𝑖 − 𝛼∗

𝑖)(𝛼𝑗 − 𝛼∗
𝑗)𝐾(x𝑖, x𝑗) − 𝜖 ∑

𝑖
(𝛼𝑖 + 𝛼∗

𝑖) + ∑
𝑖

𝑦𝑖(𝛼𝑖 − 𝛼∗
𝑖)

subject to:
𝑚

∑
𝑖=1

(𝛼𝑖 − 𝛼∗
𝑖) = 0

0 ≤ 𝛼𝑖, 𝛼∗
𝑖 ≤ 𝐶

Predictor

𝑓(x) =
𝑚

∑
𝑖=1

(𝛼𝑖 − 𝛼∗
𝑖)𝐾(x𝑖, x) + 𝑏

Linear SVC Implementation (Sub-Gradient Descent)

class linear_svc:
def __init__(self, C=0.01, learning_rate=0.01):

self.C = C # Regularization parameter
self.learning_rate = learning_rate
self.loss_history = []

def fit(self, X_train, y_train, iterations=10000, threshold=1e-6):
"""Train SVC using sub-gradient descent on hinge loss."""
# Convert labels to -1, +1
y_train[y_train == 0] = -1
y_train[y_train == 1] = +1

7



w = np.random.randn(X_train.shape[1])
b = 0

for epoch in range(iterations):
for i in range(X_train.shape[0]):

# Compute margin: y_i * (w.x_i + b)
m_i = y_train[i] * (np.dot(w, X_train[i]) + b)

if m_i >= 1: # Correct side, no hinge loss
gradient_w = w
gradient_b = 0

else: # Margin violation
gradient_w = w - (self.C * X_train[i] * y_train[i])
gradient_b = -self.C * y_train[i]

w = w - self.learning_rate * gradient_w
b = b - self.learning_rate * gradient_b

self.w, self.b = w, b
return w, b

def predict(self, X_test):
"""Predict class labels (-1 or +1)."""
return np.sign(np.dot(X_test, self.w) + self.b)

Linear SVR Implementation (Sub-Gradient Descent)

class linear_svr:
def __init__(self, C=0.1, epsilon=10.0, learning_rate=0.01):

self.C = C # Regularization parameter
self.epsilon = epsilon # Epsilon-tube width
self.learning_rate = learning_rate

def fit(self, X_train, y_train, iterations=1000):
"""Train SVR using epsilon-insensitive loss."""
w = np.zeros(X_train.shape[1])
b = 0

for epoch in range(iterations):

8



for i in range(X_train.shape[0]):
f_i = np.dot(w, X_train[i]) + b
residual = y_train[i] - f_i

if np.abs(residual) <= self.epsilon:
# Inside tube: only regularization
dw, db = w, 0

elif residual > self.epsilon:
# Prediction too low
dw = w - self.C * X_train[i]
db = -self.C

else:
# Prediction too high
dw = w + self.C * X_train[i]
db = self.C

w = w - self.learning_rate * dw
b = b - self.learning_rate * db

self.w, self.b = w, b
return w, b

def predict(self, X_test):
"""Predict continuous values."""
return np.dot(X_test, self.w) + self.b

9


	Support Vector Machine (SVM)
	Core Idea
	Why Maximum Margin?
	Support Vectors
	Classifier

	Hard Margin SVM
	Primal Optimization
	Dual Formulation
	Problem with Hard Margin

	Soft Margin SVM
	Primal Optimization
	Dual Formulation
	Decision Function

	Kernel Trick
	Understanding C
	Support Vector Regression (SVR)
	Primal
	Dual
	Predictor

	Linear SVC Implementation (Sub-Gradient Descent)
	Linear SVR Implementation (Sub-Gradient Descent)

