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1 Note

Full implementation available at GitHub - ML from Scratch

Support Vector Machine (SVM)

You thought SGD is Stochastic Gradient Descent? No, it is Sub Gradient Descent.

Core ldea

The main idea of SVM is to find an optimal hyperplane that separates classes with the max-
imum margin.

The margin is nothing but the distance from the hyperplane where data points of both classes
must be at a wider distance.

SVM Goal: Maximizes the margin distance to nearest points from each class.

Margin: Distance between hyperplane and nearest points.
Why Maximum Margin?
¢ Robustness to noise

e Proven to reduce overfitting
o Generalizes better to unseen data

In 2D it is a line, 3D it is a plane, n-D it is:

wix+b=0

Support Vectors

The data points closest to the hyperplane (that define the margin).

Classifier
f(x) = sign(wlx + b)

Where the sign is the Signum function: f(z) < 0= —1, f(z) =0=0, f(z) > 0= +1


https://github.com/bhanuprasanna2001/ML_from_scratch

Hard Margin SVM

The hard margin concept is for linear SVM where we can’t allow any misclassifications. The
decision boundary must perfectly divide all data points.

The margin is:
1
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Primal Optimization

1
min ~ |w|?
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subject to:
y(wlix, +b) >1 Vi

This is a convex quadratic optimization with linear constraints.

Dual Formulation

Using Lagrangian multipliers:
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The «; is a Lagrange multiplier for each constraint g;(w,b) < 0 where:

g;(w,b) =1 _yi(WTXi +b) <0

Problem with Hard Margin

The inequality constraints demand every single training data point must be classified cor-
rectly and must lie outside the margin or exactly on its boundary. There is no tolerance for
misclassification or points falling within the margin.



Soft Margin SVM

We allow some tolerance to the classes to be misclassified. We introduce slack variables §; and
regularization parameter C'.

Primal Optimization
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Dual Formulation
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The support vectors are those with o; > 0. The misclassified or margin-violating ones often
have o; = C.

Decision Function

f(x) = Z ayXix +b

=1



Kernel Trick

The kernel trick maps our inner products to higher dimensions to divide the data better:

szxj = K(x;, xj)

The dual becomes:
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The classifier:

Understanding C

C is a regularization hyperparameter that controls the trade-off between:

1. Margin width (|w]|?)
2. Training error (slack penalty via }_¢&;)

Small C (e.g., 0.01) Large C (e.g., 1000)

Wider margin Tighter margin

More regularization Less regularization

Better generalization Higher training accuracy

More violations allowed Risk of overfitting

Lower training accuracy Sensitive to outliers

Use for noisy data, many outliers Use for clean data, confident labels

Support Vector Regression (SVR)

The concept for SVR is the same, but we use 2 slack variables and a new loss function:
epsilon-insensitive loss which acts as a tube.



Primal
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subject to:

Predictor

f(x) = Z(az‘ —aj)K(x;,x) +b

~

Linear SVC Implementation (Sub-Gradient Descent)

class linear_svc:
def __init__(self, C=0.01, learning rate=0.01):
self.C = C # Regularization parameter
self.learning _rate = learning rate
self.loss_history = []

def fit(self, X_train, y_train, iterations=10000, threshold=1e-6):
"""Train SVC using sub-gradient descent on hinge loss."""
# Convert labels to -1, +1
y_train[y_train == 0] = -1
y_train[y_train == 1] = +1
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np.random.randn(X_train.shape[1])
b=20

for epoch in range(iterations):
for i in range(X_train.shape[0]):
# Compute margin: y_i * (w.x_i + b)
m_i = y_train[i] * (np.dot(w, X_train[i]) + D)

if m_i >= 1: # Correct side, no hinge loss
gradient_ w = w
gradient_b = 0
else: # Margin violation
gradient_w = w - (self.C * X_train[i] * y_train[i])
gradient_b = -self.C * y_train[i]

W
b

w — self.learning_rate * gradient_w
b - self.learning rate * gradient_b

self.w, self.b = w, b
return w, b

def predict(self, X_test):
"""Predict class labels (-1 or +1).""*
return np.sign(np.dot(X_test, self.w) + self.Db)

Linear SVR Implementation (Sub-Gradient Descent)

class linear_svr:
def __init__(self, C=0.1, epsilon=10.0, learning rate=0.01):
self.C = C # Regularization parameter
self.epsilon = epsilon # Epsilon-tube width
self.learning _rate = learning rate

def fit(self, X_train, y_train, iterations=1000):
"""Train SVR using epsilon-insensitive loss."""
w = np.zeros(X_train.shape[1])
b=20

for epoch in range(iterations):



def

for i in range(X_train.shape[0]):
f i = np.dot(w, X_train[i]) + b
residual = y_train[i] - f_i

if np.abs(residual) <= self.epsilon:
# Inside tube: only regularization
dw, db = w, O
elif residual > self.epsilon:
# Prediction too low
dw = w - self.C * X_train[i]
db = -self.C
else:
# Prediction too high
dw = w + self.C * X train[i]

db = self.C
w = w - self.learning rate * dw
b = b - self.learning rate * db

self.w, self.b = w, b
return w, b

predict(self, X_test):
"""Predict continuous values."""
return np.dot(X_test, self.w) + self.b
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