
Random Forest from Scratch

Bhanu Prasanna Koppolu

Table of contents

Random Forest . 3
How Trees are Built . 3
Random Feature Selection . 3
The Problem with Decision Trees . 3
Pros . 3
Cons . 4

Implementation . 4
Random Forest Classifier . 4
Random Forest Regressor . 5

2

Note

Full implementation available at GitHub - ML from Scratch

Random Forest

The random forest just builds on top of the decision tree. We build multiple decision trees
and do a voting to see which class is highest.

How Trees are Built

The thing is that we have a dataset, the tree is built using the dataset. Even slight changes
to the dataset can lead to a completely different tree, which is what we’re gonna do.

We sample data from our training data with replacement to get multiple training datasets,
which we then use to build the decision trees. The part where we sample data with replacement
is called bootstrapping.

Bootstrap sampling creates diversity, and averaging reduces variance.

Random Feature Selection

Why perform random feature selection at each split?

It helps prevent strong predictors from dominating all trees. Without it, trees would be too
similar (highly correlated), reducing ensemble benefit.

The Problem with Decision Trees

Decision trees have a chance of overfitting: Low bias, high variance.

Random Forest averages and reduces variance without increasing the bias much.

Pros

• Robust to overfitting
• Handles non-linear relationships
• Feature importance is built-in
• Works with missing data
• Minimal hyperparameter tuning

3

https://github.com/bhanuprasanna2001/ML_from_scratch

Cons

• Less interpretable than single tree
• Slower prediction (must query B trees)
• Larger memory footprint
• Can struggle with extrapolation (the model would not perfectly comprehend a new case

in future outside of the current data)

Implementation

Random Forest Classifier

class RandomForestClassification:

def __init__(self, n_trees=50, max_depth=50, max_features=None,
min_sample_split=5, impurity="gini"):

self.n_trees = n_trees # Number of trees in forest
self.max_depth = max_depth # Max depth per tree
self.max_features = max_features # Features to consider at split (default: sqrt)
self.min_sample_split = min_sample_split
self.impurity = impurity # "gini" or "entropy"

Initialize all decision trees
self.trees = [DecisionTreeClassification(...) for _ in range(n_trees)]

def _get_random_subsets(self, X, y, n_subsets, replacement=True):
"""Bootstrap sampling: create n_subsets with replacement."""
pass

def fit(self, X_train, y_train):
"""Train each tree on bootstrap sample with random feature subset."""
if self.max_features is None:

self.max_features = int(np.sqrt(n_features))

subsets = self._get_random_subsets(X_train, y_train, n_subsets=self.n_trees)

for i in range(self.n_trees):
X_subset, y_subset = subsets[i]
Feature bagging: randomly select features
idx = np.random.choice(range(n_features), size=self.max_features, replace=True)

4

self.trees[i].feature_indices = idx
self.trees[i].fit(X_subset[:, idx], y_subset)

def predict(self, X):
"""Majority voting across all trees."""
y_preds = np.empty((X.shape[0], len(self.trees)))
for i, tree in enumerate(self.trees):

y_preds[:, i] = tree.predict(X[:, tree.feature_indices])
Return most common prediction for each sample
return np.array([np.bincount(row.astype(int)).argmax() for row in y_preds])

Random Forest Regressor

For regression, instead of voting, we take the mean of all tree predictions:

class RandomForestRegressor:

def __init__(self, n_trees=50, max_depth=50, max_features=None,
min_samples_split=5, impurity="variance"):

Same structure as classifier but uses DecisionTreeRegressor
self.trees = [DecisionTreeRegressor(...) for _ in range(n_trees)]

def fit(self, X_train, y_train):
"""Same as classifier - bootstrap + feature bagging."""
pass

def predict(self, X):
"""Average predictions across all trees."""
y_preds = np.empty((X.shape[0], len(self.trees)))
for i, tree in enumerate(self.trees):

y_preds[:, i] = tree.predict(X[:, tree.feature_indices])
Return mean prediction for each sample
return np.array([np.mean(row) for row in y_preds])

5

	Random Forest
	How Trees are Built
	Random Feature Selection
	The Problem with Decision Trees
	Pros
	Cons

	Implementation
	Random Forest Classifier
	Random Forest Regressor

