Naive Bayes from Scratch

Bhanu Prasanna Koppolu

Table of contents

Naive Bayes e
Bayes Theorem L
Breaking Down the Terms
Likelihood Computation
The Naive Assumption
Why Naive Bayes Still Works o oo
Parameterso

Implementation
Extensions oL

1 Note

Full implementation available at GitHub - ML from Scratch

Naive Bayes

For suppose we currently have 2 classes namely Spam vs Not Spam. We first compute the proba-
bilities:

P(Y = Spam|X) = some value
P(Y = Not Spam|X) = some value

The sum of these 2 probabilities is 1, because there are only 2 classes.

Bayes Theorem

Pxly=k) Ply=k)
P(x)

Py = kix) =

But we ignore P(x) because it doesn’t change at all, so we approximate:

Py = kl|x) < P(x|y =k) - P(y = k)

Breaking Down the Terms

Term Name Description

P(y = k|x) Posterior Probability of class k given features x (what we
want)

P(x|y = k) Likelihood Probability of seeing features x in class k

Ply=k) Prior Probability of class k (before seeing any
features)

P(x) Evidence Probability of features x (across all classes)

P(x) is the same for all classes, so for comparison we can ignore it.

https://github.com/bhanuprasanna2001/ML_from_scratch

Likelihood Computation

P(xly=k) = HN Ty ik O)

=1

So, the log posterior:
log(P(y = k[x)) = arg max (10g)+ Zlog (245 M 00))

The Naive Assumption

We assume features are conditionally independent given the class.

But usually the Naive assumption is almost always wrong! In real data, features are almost never
conditionally independent.

Why Naive Bayes Still Works

1. We only need ranking, not exact probabilities:

Y= argmkaxP(y = k|x)

2. Errors can cancel out: Two features are positively correlated in both classes. If class 0 and
class 1 joint probability is overestimated by similar amounts, the ratio stays approximately
correct.

3. High-dimensional spaces and strong signal vs weak correlation

Parameters

So, at the end there are only 3 parameters that come out of Gaussian Naive Bayes:

o 7w, = P(y = ¢) - prior probability for class ¢
* H.; - mean of class c for each feature j
. crgj - variance of class ¢ for each feature j

Implementation

def naive_bayes(X, y):
Gaussian Naive Bayes
X = X.copy(Q)
y = y-copyO

X_shape = X.shape
class_storage = dict()
unique_y = np.unique(y)

for ¢ in unique_y:
subset_y_c = X[y == c]
m_c = subset_y_c.shapel[0]
pi_c = m_c / X_shape[0] # Prior
u_c = np.mean(subset_y_c, axis=0) # Mean
var_c = np.var(subset_y_c, axis=0) # Variance

class_storagelc] = {}
class_storagelc] ['pi'] = pi_c
class_storagelc] ['mu'] = u_c
class_storagelc] ['var'] = var_c

return class_storage

def evaluate(X, y, params):
Evaluate Gaussian Naive Bayes
X = X.copy(Q)
s_c_dict = dict()

for ¢ in params.keys():
pi_c = params[c]['pi']
u_c = params([c]['mu']
var_c = params/[c] ['var']

Gaussian PDF in log space
s_c = np.log((1l / np.sqrt(2 * np.pi * var_c)) *

np.power (np.e, (-1 / 2) * (((X - u_c) *x 2) / var_c)))
s_c = np.log(params[c]['pi']) + np.sum(s_c, axis=1)

s_c_dict[c] = s_c

y_hat = np.column_stack([s_c_dict[i] for i in s_c_dict.keys()])
y_hat = np.vstack(y_hat.argmax(axis=1))

return y_hat

Extensions

We can extend this to Bernoulli and Multinomial cases as well:

o Bernoulli: Features have only 0 or 1 for every feature column (binary labels for features)
o Multinomial: Features can be 0, 1, 2, 3, ..., n for every feature column (count data)

	Naive Bayes
	Bayes Theorem
	Breaking Down the Terms
	Likelihood Computation
	The Naive Assumption
	Why Naive Bayes Still Works
	Parameters

	Implementation
	Extensions

