
Logistic Regression from Scratch

Bhanu Prasanna Koppolu

Table of contents

Logistic Regression . 3
Why No Closed-Form Solution? . 3
Gradient Descent for Logistic Regression . 3
Loss Function . 4
Gradient Computation . 4

2

Note

Full implementation available at GitHub - ML from Scratch

Logistic Regression

Why No Closed-Form Solution?

There is no closed-form solution for Logistic regression. The MLE doesn’t exist like it does for
Linear Regression.

Unlike Linear regression, which has a linear solution, Logistic regression makes use of the
sigmoid function which makes it non-linear, and can’t be directly derived in the closed form
solution.

Gradient Descent for Logistic Regression

So, it is the same as Linear Regression Gradient Descent. The important thing is that now
we have an activation function sigmoid. In linear regression we did not have an activation
function (Identity Activation Function), but it is not considered as an activation function.

Now, let’s see, the equation remains the same:

𝑦 = 𝑋𝑤 + 𝑏

But now for ̂𝑦 we have to do the following:

̂𝑦 = 𝜎(𝑧)

𝑧 = 𝑋𝑤 + 𝑏

Where 𝜎 is the sigmoid function:

𝜎(𝑧) = 1
1 + 𝑒−𝑧

3

https://github.com/bhanuprasanna2001/ML_from_scratch

Loss Function

The loss function has changed to Binary Cross Entropy loss taken from the negative log
likelihood of Bernoulli:

ℓ(̂𝑦, 𝑦) = −(𝑦 ⋅ log(̂𝑦) + (1 − 𝑦) ⋅ log(1 − ̂𝑦))

Gradient Computation

So, the optimization looks like this. We are again trying to find 𝜕ℓ
𝜕𝑤 and 𝜕ℓ

𝜕𝑏 :

𝜕ℓ
𝜕𝑤 = 𝜕ℓ

𝜕 ̂𝑦 ⋅ 𝜕 ̂𝑦
𝜕𝑧 ⋅ 𝜕𝑧

𝜕𝑤 = (̂𝑦 − 𝑦) ⋅ 𝑋

𝜕ℓ
𝜕𝑏 = 𝜕ℓ

𝜕 ̂𝑦 ⋅ 𝜕 ̂𝑦
𝜕𝑧 ⋅ 𝜕𝑧

𝜕𝑏 = (̂𝑦 − 𝑦)

𝜕𝐽
𝜕𝑤 = 1

𝑚𝑋𝑇 (̂𝑦 − 𝑦)

𝜕𝐽
𝜕𝑏 = 1

𝑚(̂𝑦 − 𝑦)

def logistic_regression(X, y, learning_rate=0.01, iterations=1000):
w = np.random.rand(X.shape[1])
b = np.random.rand(1)
m = X.shape[0]

cost_list = []

for i in range(iterations):
z = (X @ w + b)
y_hat = 1 / (1 + np.power(np.e, -z))

dj_dw = (1/m) * (X.T @ (y_hat - y))
dj_db = (1/m) * np.sum(y_hat - y)

w = w - (learning_rate * dj_dw)
b = b - (learning_rate * dj_db)

cost = -1 * ((y * np.log(y_hat + 1e-15)) + ((1 - y) * np.log(1 - y_hat + 1e-15)))

4

cost = (1 / m) * np.sum(cost)
cost_list.append(cost)

return w, b, cost_list

5

	Logistic Regression
	Why No Closed-Form Solution?
	Gradient Descent for Logistic Regression
	Loss Function
	Gradient Computation

