
Linear Regression from Scratch

Bhanu Prasanna Koppolu

Table of contents

Linear Regression . 3
Closed Form Solution . 3
Gradient Descent . 3
Loss Function . 4
Cost Function . 4
Gradient Computation . 5
Parameter Update . 5

2

Note

Full implementation available at GitHub - ML from Scratch

Linear Regression

Closed Form Solution

The Linear Regression closed form solution is:

𝜃 = (𝑋𝑇 𝑋)−1𝑋𝑇 𝑦

Where 𝜃 is the optimal parameters.

We need to add another column of 1s for the Intercept (bias). Without the Intercept, the
fitted line is forced to pass through the origin. So we form a design matrix 𝑋̄ = [1, 𝑋] and use
𝜃 to compute the closed form solution.

import numpy as np

X_bar = np.column_stack((np.ones(X.shape[0]), X))

l_h_t = np.linalg.inv(np.transpose(X_bar) @ (X_bar))
r_h_t = X_bar.T @ y
theta = l_h_t @ r_h_t

Gradient Descent

It took me a long time to perfectly understand gradient descent. But in short it is just the
chain rule underneath.

The algorithm doing all this is Backpropagation calculating gradients in this process allowing
the gradient descent.

So, for linear regression, the equation looks like this:

𝑦 = 𝑚𝑥 + 𝑏

Where if we push it to matrix notation then:

3

https://github.com/bhanuprasanna2001/ML_from_scratch

𝑦 = 𝑋 ⋅ 𝜃 + 𝐵

or

𝑦 = 𝑋̄ ⋅ 𝜃

where the intercept (bias) is included in 𝑋̄. 𝑋̄ is the design matrix.

So, we are trying to find the 𝜃 and 𝐵 (intercept or bias) where the 𝑋 gets as close as to 𝑌 ,
when we plug in 𝑋 and the optimized 𝜃 and 𝐵.

It is all partial derivatives underneath, that is more terms (or multiple variables not just one
like in ordinary differential equations or normal differential equations) to derivate with.

Loss Function

We have a loss function:

ℓ(𝑦𝑖, ̂𝑦𝑖) = 1
2(̂𝑦𝑖 − 𝑦𝑖)2

where ̂𝑦 is the prediction ̂𝑦 = 𝑋̄ ⋅ 𝜃, and 𝑦 is the true value.

So, our goal is to get ̂𝑦 as close as possible to 𝑦 by minimizing the loss.

Cost Function

The cost 𝐽 is:

𝐽 = 1
𝑚

𝑚
∑
𝑖=0

ℓ(𝑦𝑖, ̂𝑦𝑖)

Sometimes it is also 1
2𝑚 rather than just 1

𝑚 for expanded loss. Where 𝑚 is the number of data
samples.

4

Gradient Computation

Then we do delta (referred to as 𝑑 throughout for brevity - concise notation):

𝜕ℓ
𝜕𝑤 = 𝜕ℓ

𝜕 ̂𝑦 ⋅ 𝜕 ̂𝑦
𝜕𝑤 = (̂𝑦 − 𝑦) ⋅ 𝑥

𝜕ℓ
𝜕𝑏 = 𝜕ℓ

𝜕 ̂𝑦 ⋅ 𝜕 ̂𝑦
𝜕𝑏 = (̂𝑦 − 𝑦)

𝜕𝐽
𝜕𝑤 = 1

𝑚 ∑ 𝜕ℓ
𝜕𝑤

𝜕𝐽
𝜕𝑏 = 1

𝑚 ∑ 𝜕ℓ
𝜕𝑏

This is the chain rule if you clearly observe it, so this applies for more complex architectures
like FFN with multiple layers, which goes on. But the final goal is to minimize the loss.

But as all these are matrix operations it is much more easier for us to do, Lord NumPy.

At final after solving these, we get:

𝜕𝐽
𝜕𝑤 = 1

𝑚𝑋𝑇 (̂𝑦 − 𝑦)

𝜕𝐽
𝜕𝑏 = 1

𝑚 ∑(̂𝑦𝑖 − 𝑦𝑖)

Parameter Update

So, we just found the gradients but haven’t yet updated the 𝑤 and 𝑏 to get closer, we need
another term 𝜂 which is the learning rate that we have to use:

𝑤 = 𝑤 − 𝜂 ⋅ 𝜕𝐽
𝜕𝑤

𝑏 = 𝑏 − 𝜂 ⋅ 𝜕𝐽
𝜕𝑏

This happens over a lot of iterations which allows us to minimize the loss as much as possible.

5

def linear_regression(X, y, learning_rate=0.01, iterations=10):
m = X.shape[0] # Number of samples

w = np.random.rand(X.shape[1])
bias = np.random.rand(1)

cost_history = []

for i in range(iterations):
y_hat = X @ w + bias
dl_dw = X.T @ (y_hat - y)
dl_db = (y_hat - y)

dj_dw = (1/m) * dl_dw
dj_db = (1/m) * np.sum(dl_db)

w = w - learning_rate * dj_dw
bias = bias - learning_rate * dj_db

cost = (1/(2*m)) * np.sum((y_hat - y)**2)
cost_history.append(cost)

return w, bias, cost_history

6

	Linear Regression
	Closed Form Solution
	Gradient Descent
	Loss Function
	Cost Function
	Gradient Computation
	Parameter Update

