K-Nearest Neighbours from Scratch

Bhanu Prasanna Koppolu

Table of contents

K-Nearest Neighbours (KNN)
What is KNN7 e
Distance Metrics
The Algorithm e

Classification e
Unweighted Majority Vote (Classic KNN)
Distance Weighted KNN Classification

Regression
Unweighted KNN Regression
Distance Weighted KNN Regression
Noteon k e

Classification Implementation

Regression Implementation o Lo oo

N Ot Ot O O U i = b W W W Ww

1 Note

Full implementation available at GitHub - ML from Scratch

K-Nearest Neighbours (KNN)

KNN can work both as a classification and as a regression algorithm for supervised tasks.

What is KNN?

There is no specific training that is required, because KNN just looks at: close points in the
input space should have similar outputs.

Distance Metrics

For this we need a Distance equation and there are many choices:

1. Euclidean - Most commonly used
2. Manhattan

3. Minkowski
4. And many more

The Algorithm

1. For each training point ¢ = 1, ..., m, compute the distance:

di = D<xquery7 x@))

2. Sort the training points by distance d;

3. Take indices of the k nearest neighbours:

Nk:(xquery) = {il’i27)Zk}

Such that d;, < d; < ..<d,

K

4. Do classification or regression using their y¥ values

https://github.com/bhanuprasanna2001/ML_from_scratch

Classification

We have y, € {1,2,...,C}. For a query x we find its k neighbours:

Nk<x) = {7;17 s Zk}

Unweighted Majority Vote (Classic KNN)

1. For each class ¢, count how many of the k neighbours have label c:

n(z)= Y Uy =c

1€N, ()
where 1 is the indicator function (1 if true, 0 if false)

2. Choose the class with the highest count:

So, the prediction is simply the most frequent class among the k neighbours.

Also can be interpreted as:

Bly = cla) = 22

Distance Weighted KNN Classification

We want closer neighbours to have more influence.

The weight for each neighbour:

1
Wi = d(z,z;)P + €

where p is a power, € is to prevent division by zero.

Weighted count:
ne(z) = Z w,; - Hy; = c}

1€N, ()

The y remains the same (argmax).

Probability estimate:

Ply = cla) = ="

where ¢’ runs over all classes.

Regression

Now, we have target values y, € R.

Same neighbour set: Ny (x) = {iy,..., 7}

Unweighted KNN Regression

iw=1 3 v

€N, (x)

It is to find the K Nearest target values and average them.

Distance Weighted KNN Regression

You weigh in nearer points more.

Given weights w, > 0 for i € N, (x):

Then, normalize weights:

Predicted value:
1EN ()

This is the weighted average of neighbour targets.

Note on k

When k = 1, weighted and unweighted versions become identical. k is a hyperparameter.

Classification Implementation

class knn_unweighted_classification:
K - Nearest Neighbours for Unweighted Classification

def __init__(self, k):
self.k = k

def fit(self, X_train, y_train):
self.X_train = X_train.copy()
self.y_train = y_train.copy()
return self

def predict(self, X_test):
y_hat = []

for i in range(X_test.shape[0]):
Step 1: Compute distance to all training points

dis_tt = np.sqrt(np.sum((self.X_train - X_test[i]) **x 2, axis=1))

Step 2: Compute K Nearest Neighbours indexes
k_idx = np.argpartition(dis_tt, self.k, axis=0) [:self.k]

Step 3: Find the labels for the respective indexes in y_train

labels_idx = self.y_train[k_idx]

Step 4: Pick the highest count from labels_idx
count_highest_label = np.bincount(labels_idx)
count_highest_label = np.argmax(count_highest_label)

Step 5: Append the highest count label to y_hat
y_hat.append(count_highest_label)

return y_hat
class knn_weighted_classification:
def __init__(self, k, p=2, epsilon=1e-6):
self .k = k
self.p = p

self.epsilon = epsilon

def fit(self, X_train, y_train):
self.X_train = X_train

self.y_train = y_train
return self

def predict(self, X_test):

y_hat = []
for i in range(X_test.shape[0]):
Step 1: Calculate the distance to all training points
dis_tt = np.sqrt(op.sum((self.X_train - X_test[i]) #*x 2, axis=1))

Step 2: Find the indexes k nearest neighbours
k_idx = np.argpartition(dis_tt, self.k, axis=0) [:self.k]

Step 3: Extract the distances of only those k neighbours
dis_tt = dis_tt[k_idx]

Step 4: Calculate the weights only for those k neighbours
w =1 / (np.power(dis_tt, self.p) + self.epsilon)

Step 5: Weighted voting
labels_idx = self.y_train[k_idx]

wv = np.bincount(labels_idx, weights=w) # I didn't know this, awesome.

Step 6: Argmax
label = np.argmax(wv)

y_hat.append(label)

return y_hat

Regression Implementation

class knn_unweighted_regression:

def init (self, k=5):
self .k = k

def fit(self, X_train, y_train):
self . X _train = X_train
self.y_train = y_train

def

return self
predict(self, X_test):

y_hat = []
for i in range(X_test.shape[0]):

Step 1: Calculate the distance from
dis_tt = np.sqrt(np.sum((self.X_train

Step 2: Select k nearest neighbours
ks_idx = np.argpartition(dis_tt, self

Step 3: Get the values from y_train

values_idx = self.y_train[ks_idx]

Step 4: Append the mean of each row

y_hat.append(np.mean(values_idx))

return y_hat

class knn_weighted_regression:

def

def

def

__init__(self, k=5, p=2, epsilon=1e-6):

self.k = k
self.p = p
self.epsilon = epsilon

fit(self, X_train, y_train):
self.X _train = X_train
self.y_train = y_train
return self

predict(self, X_test):

y_hat = []
for i in range(X_test.shape[0]):

all training points
- X _test[i]) ** 2, axis=1))

k) [:self.k]

for the k idx

containing the values of k nearest neighbor

Step 1: Compute the distance from all training points

dis_tt

np.sqrt(np.sum((self.X_train - X_test[i]) ** 2, axis=1))

Step 2: Find the indexes of k nearest neighbours
ks_idx = np.argpartition(dis_tt, self.k) [:self.k]

dis_tt = dis_tt[ks_idx]
values_idx = self.y_train[ks_idx]

Step 3: Calculate the weight
w =1/ (((dis_tt) ** self.p) + self.epsilon)

Step 4: Calculate the weighted average of their target values
wa = np.average(values_idx, weights=w)

Step 5: Append the wa to y_hat
y_hat.append(wa)

return y_hat

	K-Nearest Neighbours (KNN)
	What is KNN?
	Distance Metrics
	The Algorithm

	Classification
	Unweighted Majority Vote (Classic KNN)
	Distance Weighted KNN Classification

	Regression
	Unweighted KNN Regression
	Distance Weighted KNN Regression
	Note on k

	Classification Implementation
	Regression Implementation

