
K-Nearest Neighbours from Scratch

Bhanu Prasanna Koppolu

Table of contents

K-Nearest Neighbours (KNN) . 3
What is KNN? . 3
Distance Metrics . 3
The Algorithm . 3

Classification . 4
Unweighted Majority Vote (Classic KNN) . 4
Distance Weighted KNN Classification . 4

Regression . 5
Unweighted KNN Regression . 5
Distance Weighted KNN Regression . 5
Note on k . 5

Classification Implementation . 5
Regression Implementation . 7

2

Note

Full implementation available at GitHub - ML from Scratch

K-Nearest Neighbours (KNN)

KNN can work both as a classification and as a regression algorithm for supervised tasks.

What is KNN?

There is no specific training that is required, because KNN just looks at: close points in the
input space should have similar outputs.

Distance Metrics

For this we need a Distance equation and there are many choices:

1. Euclidean - Most commonly used
2. Manhattan
3. Minkowski
4. And many more

The Algorithm

1. For each training point 𝑖 = 1, … , 𝑚, compute the distance:

𝑑𝑖 = 𝐷(𝑥query, 𝑥(𝑖))

2. Sort the training points by distance 𝑑𝑖

3. Take indices of the 𝑘 nearest neighbours:

𝑁𝑘(𝑥query) = {𝑖1, 𝑖2, … , 𝑖𝑘}

Such that 𝑑𝑖1
≤ 𝑑𝑖2

≤ … ≤ 𝑑𝑖𝑘

4. Do classification or regression using their 𝑦(𝑖) values

3

https://github.com/bhanuprasanna2001/ML_from_scratch

Classification

We have 𝑦𝑖 ∈ {1, 2, … , 𝐶}. For a query 𝑥 we find its 𝑘 neighbours:

𝑁𝑘(𝑥) = {𝑖1, … , 𝑖𝑘}

Unweighted Majority Vote (Classic KNN)

1. For each class 𝑐, count how many of the 𝑘 neighbours have label 𝑐:

𝑛𝑐(𝑥) = ∑
𝑖∈𝑁𝑘(𝑥)

1{𝑦𝑖 = 𝑐}

where 1 is the indicator function (1 if true, 0 if false)

2. Choose the class with the highest count:

̂𝑦 = arg max
𝑐∈{1,…,𝐶}

𝑛𝑐(𝑥)

So, the prediction is simply the most frequent class among the 𝑘 neighbours.

Also can be interpreted as:
̂𝑃 (𝑦 = 𝑐|𝑥) = 𝑛𝑐(𝑥)

𝑘

Distance Weighted KNN Classification

We want closer neighbours to have more influence.

The weight for each neighbour:
𝑤𝑖 = 1

𝑑(𝑥, 𝑥𝑖)𝑝 + 𝜖

where 𝑝 is a power, 𝜖 is to prevent division by zero.

Weighted count:
𝑛𝑐(𝑥) = ∑

𝑖∈𝑁𝑘(𝑥)
𝑤𝑖 ⋅ 1{𝑦𝑖 = 𝑐}

The ̂𝑦 remains the same (argmax).

Probability estimate:
̂𝑃 (𝑦 = 𝑐|𝑥) = 𝑛𝑐(𝑥)

∑𝑐′ 𝑛𝑐′(𝑥)

where 𝑐′ runs over all classes.

4

Regression

Now, we have target values 𝑦𝑖 ∈ ℝ.

Same neighbour set: 𝑁𝑘(𝑥) = {𝑖1, … , 𝑖𝑘}

Unweighted KNN Regression

̂𝑦(𝑥) = 1
𝑘 ∑

𝑖∈𝑁𝑘(𝑥)
𝑦𝑖

It is to find the K Nearest target values and average them.

Distance Weighted KNN Regression

You weigh in nearer points more.

Given weights 𝑤𝑖 ≥ 0 for 𝑖 ∈ 𝑁𝑘(𝑥):

𝑤𝑖 = 1
𝑑(𝑥, 𝑥𝑖)𝑝 + 𝜖

Then, normalize weights:
𝑤̄𝑖 = 𝑤𝑖

∑𝑗∈𝑁𝑘(𝑥) 𝑤𝑗

Predicted value:
̂𝑦(𝑥) = ∑

𝑖∈𝑁𝑘(𝑥)
𝑤̄𝑖 ⋅ 𝑦𝑖

This is the weighted average of neighbour targets.

Note on k

When 𝑘 = 1, weighted and unweighted versions become identical. 𝑘 is a hyperparameter.

Classification Implementation

5

class knn_unweighted_classification:
K - Nearest Neighbours for Unweighted Classification

def __init__(self, k):
self.k = k

def fit(self, X_train, y_train):
self.X_train = X_train.copy()
self.y_train = y_train.copy()
return self

def predict(self, X_test):

y_hat = []
for i in range(X_test.shape[0]):

Step 1: Compute distance to all training points
dis_tt = np.sqrt(np.sum((self.X_train - X_test[i]) ** 2, axis=1))

Step 2: Compute K Nearest Neighbours indexes
k_idx = np.argpartition(dis_tt, self.k, axis=0)[:self.k]

Step 3: Find the labels for the respective indexes in y_train
labels_idx = self.y_train[k_idx]

Step 4: Pick the highest count from labels_idx
count_highest_label = np.bincount(labels_idx)
count_highest_label = np.argmax(count_highest_label)

Step 5: Append the highest count label to y_hat
y_hat.append(count_highest_label)

return y_hat

class knn_weighted_classification:

def __init__(self, k, p=2, epsilon=1e-6):
self.k = k
self.p = p
self.epsilon = epsilon

def fit(self, X_train, y_train):
self.X_train = X_train

6

self.y_train = y_train
return self

def predict(self, X_test):

y_hat = []
for i in range(X_test.shape[0]):

Step 1: Calculate the distance to all training points
dis_tt = np.sqrt(np.sum((self.X_train - X_test[i]) ** 2, axis=1))

Step 2: Find the indexes k nearest neighbours
k_idx = np.argpartition(dis_tt, self.k, axis=0)[:self.k]

Step 3: Extract the distances of only those k neighbours
dis_tt = dis_tt[k_idx]

Step 4: Calculate the weights only for those k neighbours
w = 1 / (np.power(dis_tt, self.p) + self.epsilon)

Step 5: Weighted voting
labels_idx = self.y_train[k_idx]
wv = np.bincount(labels_idx, weights=w) # I didn't know this, awesome.

Step 6: Argmax
label = np.argmax(wv)

y_hat.append(label)

return y_hat

Regression Implementation

class knn_unweighted_regression:

def __init__(self, k=5):
self.k = k

def fit(self, X_train, y_train):
self.X_train = X_train
self.y_train = y_train

7

return self

def predict(self, X_test):

y_hat = []
for i in range(X_test.shape[0]):

Step 1: Calculate the distance from all training points
dis_tt = np.sqrt(np.sum((self.X_train - X_test[i]) ** 2, axis=1))

Step 2: Select k nearest neighbours
ks_idx = np.argpartition(dis_tt, self.k)[:self.k]

Step 3: Get the values from y_train for the k idx
values_idx = self.y_train[ks_idx]

Step 4: Append the mean of each row containing the values of k nearest neighbours
y_hat.append(np.mean(values_idx))

return y_hat

class knn_weighted_regression:

def __init__(self, k=5, p=2, epsilon=1e-6):
self.k = k
self.p = p
self.epsilon = epsilon

def fit(self, X_train, y_train):
self.X_train = X_train
self.y_train = y_train
return self

def predict(self, X_test):

y_hat = []
for i in range(X_test.shape[0]):

Step 1: Compute the distance from all training points
dis_tt = np.sqrt(np.sum((self.X_train - X_test[i]) ** 2, axis=1))

Step 2: Find the indexes of k nearest neighbours
ks_idx = np.argpartition(dis_tt, self.k)[:self.k]

8

dis_tt = dis_tt[ks_idx]
values_idx = self.y_train[ks_idx]

Step 3: Calculate the weight
w = 1 / (((dis_tt) ** self.p) + self.epsilon)

Step 4: Calculate the weighted average of their target values
wa = np.average(values_idx, weights=w)

Step 5: Append the wa to y_hat
y_hat.append(wa)

return y_hat

9

	K-Nearest Neighbours (KNN)
	What is KNN?
	Distance Metrics
	The Algorithm

	Classification
	Unweighted Majority Vote (Classic KNN)
	Distance Weighted KNN Classification

	Regression
	Unweighted KNN Regression
	Distance Weighted KNN Regression
	Note on k

	Classification Implementation
	Regression Implementation

