
K-Means Clustering from Scratch

Bhanu Prasanna Koppolu

Table of contents

K-Means Clustering . 3
Objective . 3
The Algorithm . 3
Mathematical Formulation . 3
Two Main Steps . 4

Implementation . 4

2

Source Code

Full implementation available at ML_from_scratch/K-Means

K-Means Clustering

K-Means is a clustering algorithm which comes under Unsupervised rather than Supervised.
We only have the Data 𝑋 which has 𝑚 data points where each data point is represented as
𝑥𝑖.

Objective

The main objective of K-Means is to form 𝐾 clusters where the points inside have the lowest
Cost 𝐽 .

The cost is nothing but the sum of Squared Euclidean Distance of all the data points in
a cluster with respect to the center of the cluster.

The Algorithm

1. First we randomly take 𝐾 points from the Data 𝑋 to be our Center points for our 𝐾
clusters

2. Assignment operation: assign each data point 𝑥𝑖 to its respective 𝑘-th cluster based
on the calculated distance

3. After assignment, compute the mean of all points inside the cluster to find the new
center for cluster 𝑘

4. Calculate cost 𝐽 . If it converges and is less than our threshold, the model has successfully
been fit

5. Steps 1-4 are repeated for a certain number of iterations or until convergence

Mathematical Formulation

We have: - Data points 𝑥𝑖 where 𝑖 = 1 to 𝑚 - Cluster centers 𝜇𝑘 where 𝑘 = 1 to 𝐾 - 𝑟𝑖𝑘 -
indicator function that tells if the 𝑖-th data point is in 𝑘-th cluster (1 if yes, 0 if no)

Squared Euclidean Distance:
(𝑥𝑖 − 𝜇𝑘)2

3

https://github.com/bhanuprasanna2001/ML_from_scratch/tree/main/K-Means

Cost Function:

𝐽({𝑟𝑖𝑘}, {𝜇𝑘}) =
𝑚

∑
𝑖=1

𝐾
∑
𝑘=1

𝑟𝑖𝑘(𝑥𝑖 − 𝜇𝑘)2

Two Main Steps

Assignment Step (Given Centers 𝜇𝑘, Find best assignments 𝑟𝑖𝑘)

We have to choose 𝑟𝑖𝑘 for each 𝑖: - 𝑟𝑖𝑘 ∈ {0, 1} - ∑𝐾
𝑘=1 𝑟𝑖𝑘 = 1

For each point 𝑥𝑖:

1. Compute distances to each centroid: (𝑥𝑖 − 𝜇𝑘)2 for all 𝑘
2. Assign the point to the closest centroid:

𝑟𝑖𝑘 = 1 if 𝑘 = arg min
𝑗

(𝑥𝑖 − 𝜇𝑗)2, 𝑟𝑖𝑗 = 0 for 𝑗 ≠ 𝑘

Update Step

For each cluster 𝑘, recompute centroid as the mean of its assigned points:

𝜇𝑘 = ∑𝑚
𝑖=1 𝑟𝑖𝑘 ⋅ 𝑥𝑖
∑𝑚

𝑖=1 𝑟𝑖𝑘
= 1

𝑛𝑘

𝑚
∑
𝑖=1𝑟𝑖𝑘=1

𝑥𝑖

Convergence

Stop when: - Assignments no longer change - Centroids move less than a certain tiny threshold
- After some max iterations

The algorithm converges to a local minimum of 𝐽 .

Implementation

4

class kmeans:
"""K-Means clustering algorithm.

Partitions data into K clusters by iteratively:
1. Assigning points to nearest centroid
2. Updating centroids to cluster means
"""

def __init__(self,
k=3, # Number of clusters
iterations=1000, # Max iterations
threshold=1e-3): # Convergence threshold for cost change

self.k = k
self.iterations = iterations
self.threshold = threshold

def fit(self, X_train):
"""Fit K-Means to training data.

Algorithm:
1. Initialize k centroids randomly from data points
2. For each iteration:

- Compute distances from all points to all centroids
- Assign each point to closest centroid
- Update centroid as mean of assigned points
- Handle empty clusters by reinitializing randomly
- Check convergence (cost change < threshold)

Returns:
k_points: Final cluster centroids (k, n_features)

"""
...

def predict(self, X_test):
"""Predict cluster labels for new data.

Assigns each point to the nearest centroid based on
squared Euclidean distance.

Returns:
cluster_labels: Cluster assignment for each point

"""

5

...

6

	K-Means Clustering
	Objective
	The Algorithm
	Mathematical Formulation
	Two Main Steps

	Implementation

