Gradient Boosting from Scratch

Bhanu Prasanna Koppolu

Table of contents

Gradient Boosting L
Core Concept o o o i i e
The Algorithm
Loss Functions e
Implementation
Loss Classes o o o it
Gradient Boosting Class

TU R B W W ww

1 Source Code

Full implementation available at ML_ from_ scratch/Gradient Boosting

Gradient Boosting

The Gradient Boosting algorithm is an iterative algorithm, where you first start with the
weakest learner, then learn gradually to become a good learner.

Actually the Gradient Boosting algorithm with classification and regression is the same thing,
just the loss function varies, that’s it.

Core Concept

As the name suggests, we are going to be dealing with Gradients. So, whatever loss function
that we are going to be dealing with must be differentiable.

Mainly, we have a loss function L(y,y) where y is true predictions and y are the predicted
values.

The Algorithm

Initialize 3 to have the average of all targets and be same size as y
Take gradient with respect to our loss function

Fit a Decision Tree Regression on the gradients (residuals)
Predict and update § with learning rate

Repeat iteratively until convergence or max iterations

GUs L

We use Decision Tree Regression for both classification and regression tasks.

Loss Functions

For Regression - Squared Error (SSE):
Liy9) =23 (y—9)?
’ 2

Gradient = —(y — 9)

https://github.com/bhanuprasanna2001/ML_from_scratch/tree/main/Gradient%20Boosting

For Classification - Cross Entropy:
L(y,y) = —y -log(y) — (1 —y) - log(1 —)

Gradient = o(y) — y

where o is the sigmoid function.

Implementation

Loss Classes
class Loss(object):
"""Base class for loss functions used in gradient boosting."""

def loss(self, y_true, y_pred):
"""Compute the loss value."""

def gradient(self, y_true, y_pred):
"""Compute the gradient (negative residuals)."""

class SquaredError(Loss):
"""Squared Error loss for regression tasks.

Loss: L(y, §) = 0.5 x Z(y - §)°?
Gradient: -(y - §)

def loss(self, y_true, y_pred):

def gradient(self, y_true, y_pred):
Returns negative residuals: -(y_true - y_pred)

class CrossEntropy(Loss):
"""Cross Entropy loss for binary classification tasks.

Loss: L(y, §) = -y*log(§) - (1-y)*log(1l-§)
Gradient: sigmoid(§) - y

def loss(self, y_true, y_pred):
Clips predictions to avoid log(0)

def gradient(self, y_true, y_pred):
Returns sigmoid(y_pred) - y_true

Gradient Boosting Class

class GradientBoosting:
"""Gradient Boosting for classification and regression.

Uses an ensemble of Decision Tree Regressors fitted on

gradients (pseudo-residuals) of the loss function.

def __init__(self,
n_trees=50, # Number of boosting iterations
max_depth=50, # Max depth of each tree
min_samples_split=5, # Min samples to split a node
learning_rate=0.01, #
regression=True, #
impurity="variance"): #

Step size for updates
True=regression, False=classification
Impurity measure for trees

Select loss function based on task type
self.loss_func = SquaredError() if regression else CrossEntropy()

Initialize ensemble of Decision Tree Regressors
self.trees = [DecisionTreeRegressor(...) for _ in range(n_trees)]

def fit(self, X_train, y_train):
"""Fit the gradient boosting model.

1. Initialize predictions (mean for regression, log-odds for classification)
2. For each tree:

- Compute gradients (pseudo-residuals)
- Fit tree on gradients

- Update predictions with learning rate
nnn

def predict(self, X):
"""Make predictions.

Sum contributions from all trees, then:
- For regression: return raw predictions
- For classification: apply sigmoid and threshold at 0.5

nnn

	Gradient Boosting
	Core Concept
	The Algorithm
	Loss Functions

	Implementation
	Loss Classes
	Gradient Boosting Class

