
Decision Tree from Scratch

Bhanu Prasanna Koppolu

Table of contents

Decision Tree . 3
Key Concepts . 3
Entropy . 3
Gini Index . 3
Information Gain . 4
Understanding 𝑣 . 4
Cardinality . 4
Decision Tree Nodes . 5

Node Structure . 5
Decision Tree Classification . 5
Decision Tree Regression . 6

2

Note

Full implementation available at GitHub - ML from Scratch

Decision Tree

The main concept for decision tree is to split the tree into binary cases. Each node has 2
branches. There is only 1 root node. The final nodes are called the leaf nodes which is our
classification/regression output.

Key Concepts

The main concepts here are Information Gain, Entropy, and Gini Index.

Gini Index, Entropy, and Information Gain are all measures of impurity or disorder in decision
tree algorithms to decide how to split a node.

Entropy

Entropy is a measure of uncertainty or randomness in a node. A perfectly pure node (all
data points belong to one class) has an entropy of 0, while a node with an even distribution
of all classes has the highest entropy.

Entropy(𝑆) = −
𝑐

∑
𝑖=1

𝑝𝑖 log2(𝑝𝑖)

where 𝑐 is the number of classes, and 𝑝𝑖 is the proportion of examples in class 𝑖.

Gini Index

Gini Index is another measure of impurity or disorder. It calculates the probability of
incorrectly picking a random element if it were randomly labeled according to the distribution
of labels in the subset. A Gini index of 0 means perfect purity, while Gini index of 1 means
all elements are impure.

Gini(𝑆) = 1 −
𝑐

∑
𝑖=1

𝑝2
𝑖

where 𝑐 is the number of classes, and 𝑝𝑖 is the proportion of examples in class 𝑖.

3

https://github.com/bhanuprasanna2001/ML_from_scratch

Information Gain

Information Gain is the reduction in impurity achieved by splitting a dataset on a particular
attribute. It is the difference between the impurity of the parent node and the weighted average
of the impurities of the child nodes.

Information Gain(𝑆) = Entropy(𝑆) −
𝑣

∑
𝑗=1

|𝑆𝑗|
|𝑆| ⋅ Entropy(𝑆𝑗)

Information Gain(𝑆) = Gini(𝑆) −
𝑣

∑
𝑗=1

|𝑆𝑗|
|𝑆| ⋅ Gini(𝑆𝑗)

Decision tree algorithms choose the attribute that yields the highest information gain for the
next split, as this is the most effective at separating the data into pure subsets.

Understanding 𝑣

𝑣 is specific to a feature, not all features.

Let’s take an example: I have a dataset for house prices with 5 features: Area, Location,
number of bedrooms, washrooms, and living room area. The goal is to predict the price. Now,
𝑣 is not 5 because 𝑣 is specific to a feature. For example, the Area (SQFT), so 𝑣 can be > 2000
and ≤ 2000 (representing 𝑣 = 2).

The decision tree splits it binary. This is the CART (Classification and Regression Trees).
But there are others like C4.5, ID3, which allow multi-way splits. sklearn only implements
CART with different criterions: entropy, gini, and log-loss. Gini is faster because no
computation of log.

Cardinality

• |𝑆| (the cardinality of 𝑆): Total count of all data points in the current parent node before
the split.

• |𝑆𝑗| (the cardinality of 𝑆 sub 𝑗): Count of data points that go down the 𝑗-th branch after
the split.

• The ratio |𝑆𝑗|
|𝑆| is a simple fraction or probability, always between 0 and 1.

4

Decision Tree Nodes

The nodes are just simple logical gates. They contain only the information necessary to sort a
data point into the correct child node and to record the statistics about the data subset that
ended up there.

Node Structure

class Node:
"""Represents a node in the decision tree."""

def __init__(self, feature_index=None, threshold=None, left=None,
right=None, info_gain=None, value=None):

self.feature_index = feature_index # Index of feature to split on
self.threshold = threshold # Threshold value for the split
self.left = left # Left child node (<=threshold)
self.right = right # Right child node (>threshold)
self.info_gain = info_gain # Information gain from this split
self.value = value # Leaf value (class label or mean)

Decision Tree Classification

class DecisionTreeClassification:

def __init__(self, max_depth=50, min_samples_split=5, impurity_type="gini"):
self.max_depth = max_depth # Maximum depth of tree
self.min_samples_split = min_samples_split # Min samples to split
self.impurity_type = impurity_type # "gini" or "entropy"

def _entropy(self, p_k):
"""Calculate entropy: H(S) = -sum(p_k * log2(p_k))"""
return -1 * np.sum(p_k * np.log2(p_k))

def _gini(self, p_k):
"""Calculate gini index: G(S) = 1 - sum(p_k^2)"""
return 1 - np.sum(p_k ** 2)

def _build_tree(self, S, depth):

5

"""Recursively build tree by finding best splits."""
Returns leaf node if: pure node, max depth reached, or min samples
Otherwise finds best feature/threshold and splits recursively
pass

def fit(self, X_train, y_train):
"""Build decision tree from training data."""
self.root_node = self._build_tree(S=np.arange(X_train.shape[0]), depth=0)

def predict(self, X):
"""Traverse tree for each sample to get predictions."""
For each sample, start at root and follow left/right based on threshold
pass

Decision Tree Regression

There is not a lot of difference between the classification and regression version:

• Instead of class labels we have values
• Instead of gini/entropy we have Variance or Sum of Squared Errors (SSE) - both

use Mean
• At leaf node you store the mean of 𝑦𝑖, not class

class DecisionTreeRegressor:

def __init__(self, max_depth=50, min_samples_split=5, impurity_type="variance"):
self.max_depth = max_depth
self.min_samples_split = min_samples_split
self.impurity_type = impurity_type # "variance" or "sse"

def _build_tree(self, S, depth):
"""Same as classification but uses variance/SSE instead of gini/entropy."""
Leaf value = mean of y values in the node
pass

def fit(self, X_train, y_train):
"""Build regression tree from training data."""
pass

def predict(self, X):

6

"""Traverse tree to get predicted values (means)."""
pass

For variance:
𝐼 = Var(𝑦𝑆)

For SSE:
𝐼 = Var(𝑦𝑆) × 𝑛

where 𝑛 is the number of samples.

7

	Decision Tree
	Key Concepts
	Entropy
	Gini Index
	Information Gain
	Understanding v
	Cardinality
	Decision Tree Nodes

	Node Structure
	Decision Tree Classification
	Decision Tree Regression

