
Recurrent Neural Network from Scratch

Bhanu Prasanna Koppolu

Table of contents

Recurrent Neural Network . 3
Architecture . 3
Loss Function . 3
Backpropagation Through Time (BPTT) . 4
Gradient Clipping . 4

Implementation . 4
Training Example . 6
Vanishing/Exploding Gradients . 7

2

Source Code

Full implementation available at DL_from_scratch/rnn.py

Recurrent Neural Network

RNNs process sequential data by maintaining a hidden state that captures information from
previous time steps.

Architecture

For each time step 𝑡:

𝑎𝑡 = 𝑥𝑡𝑊𝑥ℎ + ℎ𝑡−1𝑊ℎℎ + 𝑏ℎ

ℎ𝑡 = tanh(𝑎𝑡)

̂𝑦 = ℎ𝑇 𝑊ℎ𝑦 + 𝑏𝑦

Where:

• 𝑥𝑡 - input at time 𝑡
• ℎ𝑡 - hidden state at time 𝑡
• 𝑊𝑥ℎ - input-to-hidden weights (D × H)
• 𝑊ℎℎ - hidden-to-hidden weights (H × H)
• 𝑊ℎ𝑦 - hidden-to-output weights (H × O)
• ℎ0 = 0 - initial hidden state

Loss Function

For sequence prediction (predicting next number):

𝐿 = 1
2(̂𝑦 − 𝑦)2

3

https://github.com/bhanuprasanna2001/DL_from_scratch

Backpropagation Through Time (BPTT)

Gradients flow backwards through all time steps:

𝛿𝑡 = 𝜕𝐿
𝜕ℎ𝑡

⊙ (1 − ℎ2
𝑡)

𝜕𝐿
𝜕𝑊𝑥ℎ

= ∑
𝑡

𝑥𝑇
𝑡 𝛿𝑡

𝜕𝐿
𝜕𝑊ℎℎ

= ∑
𝑡

ℎ𝑇
𝑡−1𝛿𝑡

𝜕𝐿
𝜕ℎ𝑡−1

= 𝛿𝑡𝑊 𝑇
ℎℎ

Gradient Clipping

To prevent exploding gradients:

𝑔 = {𝑔 ⋅ clip_norm
‖𝑔‖ if ‖𝑔‖ > clip_norm

𝑔 otherwise

Implementation

class RNN:
"""Vanilla RNN for sequence prediction.

Trained to predict the next number in a sequence.
"""

def __init__(self,
input=1, # Input dimension (D)
hidden=100, # Hidden dimension (H)
seq_len=50): # Sequence length (T)

self.output = 1 # Predicting single value

4

Weight matrices (small random initialization)
self.w_xh = np.random.randn(input, hidden) * 0.1 # D × H
self.w_hh = np.random.randn(hidden, hidden) * 0.1 # H × H
self.w_hy = np.random.randn(hidden, self.output) * 0.1 # H × O

self.b_h = np.random.rand(hidden) # Hidden bias
self.b_y = np.random.rand(input) # Output bias

def forward(self, x):
"""Forward pass through sequence.

h_t[0] = 0 (initial hidden state)
For t = 1 to T:

a_t = x_t @ W_xh + h_{t-1} @ W_hh + b_h
h_t = tanh(a_t)

y_hat = h_T @ W_hy + b_y
"""
self.x = x
self.h_t = np.zeros((self.seq_len + 1, self.hidden))
self.a_t = np.zeros((self.seq_len, self.hidden))

for t in range(1, self.seq_len + 1):
self.a_t[t-1] = (self.x[t-1] @ self.w_xh) + \

(self.h_t[t-1] @ self.w_hh) + self.b_h
self.h_t[t] = np.tanh(self.a_t[t-1])

self.y_hat = (self.h_t[self.seq_len] @ self.w_hy + self.b_y).item()
return self.y_hat

def backward(self, e, learning_rate=0.001):
"""Backpropagation through time (BPTT).

1. Compute output layer gradients
2. For t = T down to 1:

- Compute delta_t = dL/dh_t * tanh'(a_t)
- Accumulate weight gradients
- Propagate gradient to h_{t-1}

3. Clip gradients to prevent explosion
4. Update weights

Args:
e: Error (y_hat - y_true)

5

"""
Output layer gradients
dl_dw_hy = self.h_t[self.seq_len][:, None] * e
dl_db_y = np.array([e])

Gradient flowing into final hidden state
dl_dh_t = (self.w_hy[:, 0] * e)

Accumulate gradients over time
dl_dw_xh = np.zeros_like(self.w_xh)
dl_dw_hh = np.zeros_like(self.w_hh)
dl_db_h = np.zeros_like(self.b_h)

for t in range(self.seq_len, 0, -1):
Tanh derivative: 1 - h_t^2
delta_t = dl_dh_t * (1.0 - self.h_t[t] ** 2)

Accumulate weight gradients
dl_dw_xh += np.outer(self.x[t-1], delta_t)
dl_dw_hh += np.outer(self.h_t[t-1], delta_t)
dl_db_h += delta_t

Propagate to previous hidden state
dl_dh_t = delta_t @ self.w_hh.T

Gradient clipping
...

Weight updates
...

Training Example

The model is trained to predict the next number in a sequence:

Example: Given [1, 2, 3, ..., 50], predict 51
rnn = RNN(input=1, hidden=100, seq_len=50)

for epoch in range(epochs):
start = np.random.randint(1, 901)
inp = (np.arange(start, start + 50) / 1000).reshape(50, 1)

6

tar = (start + 50) / 1000

y_hat = rnn.forward(inp)
loss = 0.5 * (y_hat - tar) ** 2
e = y_hat - tar
rnn.backward(e, learning_rate=0.005)

Vanishing/Exploding Gradients

RNNs suffer from:

• Vanishing gradients: Gradients shrink exponentially over long sequences
• Exploding gradients: Gradients grow exponentially (mitigated by clipping)

This is why LSTMs and GRUs were developed to handle long-term dependencies better.

7

	Recurrent Neural Network
	Architecture
	Loss Function
	Backpropagation Through Time (BPTT)
	Gradient Clipping

	Implementation
	Training Example
	Vanishing/Exploding Gradients

