Recurrent Neural Network from Scratch

Bhanu Prasanna Koppolu

Table of contents

Recurrent Neural Network
Architecture
Loss Function
Backpropagation Through Time (BPTT)
Gradient Clipping e
Implementation
Training Example oL
Vanishing/Exploding Gradients

EN = N SO SO N JURY SO O

1 Source Code

Full implementation available at DL_ from_ scratch/rnn.py

Recurrent Neural Network

RNNs process sequential data by maintaining a hidden state that captures information from
previous time steps.

Architecture

For each time step t:

ay =Wy, + hy Wy, + 0y,

h, = tanh(a,)

y= hTWhy + by
Where:

e 1, - input at time ¢

e h, - hidden state at time ¢

o W,, - input-to-hidden weights (D x H)
o W), - hidden-to-hidden weights (H x H)
s W), - hidden-to-output weights (H x O)
e hg =0 - initial hidden state

Loss Function

For sequence prediction (predicting next number):

https://github.com/bhanuprasanna2001/DL_from_scratch

Backpropagation Through Time (BPTT)

Gradients flow backwards through all time steps:

oL
0, =—0(1—h?
t ath(t)

oL .
mnh_z:%@

oL T
oW, = Z hi_16,

t

oL

OE W
aht,:L t"" hh

Gradient Clipping

To prevent exploding gradients:

Igl

g - ip_norm e ol clip norm
g fr—
g otherwise

Implementation

class RNN:
"""Vanilla RNN for sequence prediction.

Trained to predict the next number in a sequence.

def _init (self,
input=1, # Input dimension (D)
hidden=100, # Hidden dimension (H)
seq_len=50): # Sequence length (T)

self.output = 1 # Predicting single value

Weight matrices (small random initialization)

self.w_xh = np.random.randn(input, hidden) * 0.1 # D x H
self.w_hh = np.random.randn(hidden, hidden) * 0.1 # H x H
self.w_hy = np.random.randn(hidden, self.output) * 0.1 # H x O
self.b_h = np.random.rand(hidden) # Hidden bias

self.b_y = np.random.rand(input) # Output bias
def forward(self, x):
"""Forward pass through sequence.

h_t[0] = 0 (initial hidden state)

For t = 1 to T:
at=xtQWzxh+h{t-1} @ W hh + b_h
h_t = tanh(a_t)

y_hat = h . T @ W_hy + b_y

self.x = x
self.h_t = np.zeros((self.seq_len + 1, self.hidden))
self.a_t = np.zeros((self.seq_len, self.hidden))

for t in range(l, self.seq_len + 1):
self.a t[t-1] = (self.x[t-1] @ self.w_xh) + \
(self.h_t[t-1] @ self.w_hh) + self.b_h
self.h_t[t] = np.tanh(self.a_t[t-1])

self.y_hat = (self.h_t[self.seq_len] @ self.w_hy + self.b_y).item()
return self.y_hat

def backward(self, e, learning rate=0.001):
"""Backpropagation through time (BPTT).

1. Compute output layer gradients

2. For t = T down to 1:
- Compute delta_t = dL/dh_t * tanh'(a_t)
- Accumulate weight gradients
- Propagate gradient to h_{t-1}

3. Clip gradients to prevent explosion

4. Update weights

Args:
e: Error (y_hat - y_true)

Output layer gradients
dl_dw_hy = self.h_t[self.seq_len][:, None] * e
dl_db_y = np.array([el)

Gradient flowing into final hidden state
dl_dh_t = (self.w_hy[:, 0] * e)

Accumulate gradients over time
dl_dw_xh = np.zeros_like(self.w_xh)
dl_dw_hh = np.zeros_like(self.w_hh)
dl_db_h = np.zeros_like(self.b_h)

for t in range(self.seq_len, 0, -1):
Tanh derivative: 1 - h_t~2
delta_t = dl_dh_t * (1.0 - self.h_t[t] *x 2)

Accumulate weight gradients

dl_dw_xh += np.outer(self.x[t-1], delta_t)
dl_dw_hh += np.outer(self.h_t[t-1], delta_t)
dl_db_h += delta_t

Propagate to previous hidden state
dl dh_t = delta_t @ self.w_hh.T

Gradient clipping

Weight updates

Training Example
The model is trained to predict the next number in a sequence:

Example: Given [1, 2, 3, ..., 50], predict 51
rnn = RNN(input=1, hidden=100, seq_len=50)

for epoch in range(epochs):
start = np.random.randint(1, 901)
inp = (np.arange(start, start + 50) / 1000) .reshape(50, 1)

tar = (start + 50) / 1000

y_hat = rnn.forward(inp)

loss = 0.5 * (y_hat - tar) ** 2

e = y_hat - tar

rnn.backward(e, learning rate=0.005)

Vanishing/Exploding Gradients

RNNs suffer from:

¢ Vanishing gradients: Gradients shrink exponentially over long sequences
o Exploding gradients: Gradients grow exponentially (mitigated by clipping)

This is why LSTMs and GRUs were developed to handle long-term dependencies better.

	Recurrent Neural Network
	Architecture
	Loss Function
	Backpropagation Through Time (BPTT)
	Gradient Clipping

	Implementation
	Training Example
	Vanishing/Exploding Gradients

