
Long Short-Term Memory (LSTM) from Scratch

Bhanu Prasanna Koppolu

Table of contents

Long Short-Term Memory (LSTM) . 3
Initial Conditions . 3
LSTM Gates . 3
Cell State and Hidden State Update . 3
Output Prediction . 4

Implementation . 4
Why LSTM Works Better . 6
Training Example . 6

2

Source Code

Full implementation available at DL_from_scratch/lstm.py

Long Short-Term Memory (LSTM)

LSTM addresses the vanishing gradient problem of vanilla RNNs by introducing a cell state and
gating mechanisms.

Initial Conditions

• ℎ0 = 0 (initial hidden state)
• 𝐶0 = 0 (initial cell state)

LSTM Gates

The LSTM has four gates, each with its own weights:

1. Forget Gate - What to forget from cell state:

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

2. Input Gate - What new information to store:

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

3. Candidate Gate - New candidate values:

̃𝐶𝑡 = tanh(𝑊𝑔 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑔)

4. Output Gate - What to output:

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

Cell State and Hidden State Update

Cell State Update:
𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡

Hidden State Update:
ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡)

3

https://github.com/bhanuprasanna2001/DL_from_scratch

Output Prediction

̂𝑦 = 𝑊𝑦 ⋅ ℎ𝑇 + 𝑏𝑦

Implementation

class LSTM:
"""LSTM for sequence prediction.

Full scratch implementation with forget, input, candidate,
and output gates.
"""

def __init__(self,
input_dim=1, # D
hidden_dim=100, # H
seq_len=50): # T

self.output_dim = input_dim # O

Forget Gate: W_f shape (H, H+D), b_f shape (H, 1)
self.W_f = np.random.randn(hidden_dim, hidden_dim + input_dim) * 0.01
self.b_f = np.random.randn(hidden_dim, 1) * 0.01

Input Gate: W_i shape (H, H+D), b_i shape (H, 1)
self.W_i = np.random.randn(hidden_dim, hidden_dim + input_dim) * 0.01
self.b_i = np.random.randn(hidden_dim, 1) * 0.01

Candidate Gate: W_g shape (H, H+D), b_g shape (H, 1)
self.W_g = np.random.randn(hidden_dim, hidden_dim + input_dim) * 0.01
self.b_g = np.random.randn(hidden_dim, 1) * 0.01

Output Gate: W_o shape (H, H+D), b_o shape (H, 1)
self.W_o = np.random.randn(hidden_dim, hidden_dim + input_dim) * 0.01
self.b_o = np.random.randn(hidden_dim, 1) * 0.01

Output Prediction: W_y shape (O, H), b_y shape (O, 1)
self.W_y = np.random.randn(self.output_dim, hidden_dim) * 0.01
self.b_y = np.random.randn(self.output_dim, 1) * 0.01

def forward(self, x):
"""Forward pass through LSTM.

For each timestep t:
1. Concatenate h_{t-1} and x_t to form z_t
2. Compute forget gate: f_t = �(W_f @ z_t + b_f)

4

3. Compute input gate: i_t = �(W_i @ z_t + b_i)
4. Compute candidate: g_t = tanh(W_g @ z_t + b_g)
5. Update cell state: C_t = f_t � C_{t-1} + i_t � g_t
6. Compute output gate: o_t = �(W_o @ z_t + b_o)
7. Compute hidden state: h_t = o_t � tanh(C_t)

Final prediction: y_hat = W_y @ h_T + b_y
"""
...

def backward(self, y_true, y_pred, lr=0.001):
"""Backpropagation through time for LSTM.

Gradient computation for all gates:

1. Output layer gradients
2. For t = T down to 1:

- G_o = G_h � tanh(C_t)
- G_C += G_h � o_t � (1 - tanh²(C_t))
- G_f = G_C � C_{t-1}
- G_i = G_C � g_t
- G_g = G_C � i_t
- Compute sigmoid/tanh derivatives
- Accumulate weight gradients
- Propagate G_h and G_C backwards

3. Clip gradients and update weights
"""
Output gradients
G_wy = (y_pred - y_true) @ self.h[self.seq_len].T # 1 × H
G_by = y_pred - y_true # 1 × 1

G_h = self.W_y.T @ (y_pred - y_true) # H × 1
G_C = np.zeros((self.hidden_dim, 1)) # H × 1

Accumulate gradients for each gate
G_wf = G_bf = G_wi = G_bi = G_wg = G_bg = G_wo = G_bo = 0

for t in range(self.seq_len, 0, -1):
Gate gradients with sigmoid/tanh derivatives
...

Accumulate weight gradients
...

Propagate to previous timestep
G_z = self.W_f.T @ G_f_pre + self.W_i.T @ G_i_pre + \

self.W_g.T @ G_g_pre + self.W_o.T @ G_o_pre

5

G_h = G_z[:self.hidden_dim]
G_C = G_C_prev

Clip gradients to [-5, 5]
for grad in [G_wf, G_bf, G_wi, G_bi, G_wg, G_bg, G_wo, G_bo, G_wy, G_by]:

np.clip(grad, -5, 5, out=grad)

Update all weights
...

@staticmethod
def sigmoid(x):

return 1 / (1 + np.exp(-x))

Why LSTM Works Better

1. Cell state acts as a highway - Gradients can flow through unimpeded
2. Gates control information flow - Network learns what to remember/forget
3. Additive updates to cell state - Reduces vanishing gradient problem

Training Example

lstm = LSTM(input_dim=1, hidden_dim=100, seq_len=250)

for epoch in range(num_epochs):
start = np.random.randint(1, 701)
inp = (np.arange(start, start + 250) / 1000).reshape(250, 1, 1)
y_true = np.array([(start + 250) / 1000]).reshape(1, 1)

y_pred = lstm.forward(inp)
loss = 0.5 * (y_pred - y_true) ** 2

lstm.backward(y_true, y_pred, lr=0.05)

The LSTM can handle much longer sequences (250 timesteps) compared to vanilla RNN (50
timesteps) due to its ability to maintain long-term dependencies.

6

	Long Short-Term Memory (LSTM)
	Initial Conditions
	LSTM Gates
	Cell State and Hidden State Update
	Output Prediction

	Implementation
	Why LSTM Works Better
	Training Example

