Long Short-Term Memory (LSTM) from Scratch

Bhanu Prasanna Koppolu

Table of contents

Long Short-Term Memory (LSTM)
Initial Conditions L
LSTM Gates o
Cell State and Hidden State Update
Output Prediction e

Implementation
Why LSTM Works Better
Training Example e

1 Source Code

Full implementation available at DL_ from_ scratch/Istm.py

Long Short-Term Memory (LSTM)

LSTM addresses the vanishing gradient problem of vanilla RNNs by introducing a cell state and
gating mechanisms.

Initial Conditions

o hy =0 (initial hidden state)
e Cy =0 (initial cell state)

LSTM Gates

The LSTM has four gates, each with its own weights:
1. Forget Gate - What to forget from cell state:

fi= U<Wf [hyq,) + bf)

2. Input Gate - What new information to store:

S a(W, - [htq,xt] + bi)

)

3. Candidate Gate - New candidate values:

~

C, = tanh(W, - [hy_y, 2] + b,)

4. Output Gate - What to output:

0y = U(Wo ! [htflaxt] + bo)

Cell State and Hidden State Update

Cell State Update: 3
Ct = ftQCt—l +/Lt®Ct

Hidden State Update:
h, = o, © tanh(C,)

https://github.com/bhanuprasanna2001/DL_from_scratch

Output Prediction

W, hy+b,

<y
Il

Implementation

class LSTM:
""'LSTM for sequence prediction.

Full scratch implementation with forget, input, candidate,
and output gates.

def __init__(self,

input_dim=1, # D
hidden_dim=100, # H
seq_len=50): #T

self.output_dim = input_dim # O

Forget Gate: W_f shape (H, H+D), b_f shape (H, 1)
self .W_f = np.random.randn(hidden_dim, hidden_dim + input_dim) * 0.01
self.b_f = np.random.randn(hidden_dim, 1) * 0.01

Input Gate: W_i shape (H, H+D), b_i shape (H, 1)
self.W_i = np.random.randn(hidden_dim, hidden_dim + input_dim) * 0.01
self.b_i = np.random.randn(hidden_dim, 1) * 0.01

Candidate Gate: W_g shape (H, H+D), b_g shape (H, 1)
self.W_g = np.random.randn(hidden_dim, hidden_dim + input_dim) * 0.01
self.b_g = np.random.randn(hidden_dim, 1) * 0.01

Output Gate: W_o shape (H, H+D), b_o shape (H, 1)
self.W_o = np.random.randn(hidden_dim, hidden_dim + input_dim) * 0.01
self.b_o = np.random.randn(hidden_dim, 1) * 0.01

Output Prediction: W_y shape (0, H), b_y shape (0, 1)
self.W_y = np.random.randn(self.output_dim, hidden_dim) * 0.01
self.b_y = np.random.randn(self.output_dim, 1) * 0.01

def forward(self, x):
"""Forward pass through LSTM.

For each timestep t:
1. Concatenate h_{t-1} and x_t to form z_t
2. Compute forget gate: f .t = (W_f @ z_t + b_£f)

Compute input gate: i_t = (W_i @ z_t + b_i)
Compute candidate: g_t = tanh(W_g @ z_t + b_g)
Update cell state: C_t = £ .t C_{t-1} +i t g_t
Compute output gate: ot = (W_o @ z_t + b_o)
Compute hidden state: h_t = o_t tanh(C_t)

~N O Ok Ww

Final prediction: y_hat = W_y @ h. T + b_y

nnn

def backward(self, y_true, y_pred, 1lr=0.001):
"""Backpropagation through time for LSTM.

Gradient computation for all gates:

1. Output layer gradients

2. For t = T down to 1:
- G o=Gh tanh(C_t)
-GC+=Gh ot (1 - tanh?(C_t))
-G f=GC C_{t-1}
-Gi=GC gt
- G_g=GC i_t

- Compute sigmoid/tanh derivatives
Accumulate weight gradients
- Propagate G_h and G_C backwards

3. Clip gradients and update weights

Output gradients

G_wy = (y_pred - y_true) @ self.h[self.seq len].T # 1 x H
G_by = y_pred - y_true #1 x 1

G h
G_C

self .W_y.T @ (y_pred - y_true) # H x 1
np.zeros((self.hidden_dim, 1)) # H x 1

Accumulate gradients for each gate
G_wf = G_bf = G_wi = G_bi =G_wg =G_bg = G_wo = G_bo =0

for t in range(self.seq_len, 0, -1):
Gate gradients with sigmoid/tanh derivatives

Accumulate weight gradients

Propagate to previous timestep
G_z = self .W_f.T @ G_f_pre + self.W_i.T @ G_i_pre + \
self.W_g.T @ G_g_pre + self.W_o.T @ G_o_pre

G h
G.C

G _z[:self.hidden_dim]
G_C_prev

Clip gradients to [-5, 5]
for grad in [G_wf, G_bf, G_wi, G_bi, G_wg, G_bg, G_wo, G_bo, G_wy, G_byl:
np.clip(grad, -5, 5, out=grad)

Update all weights

@staticmethod
def sigmoid(x):
return 1 / (1 + np.exp(-x))

Why LSTM Works Better

1. Cell state acts as a highway - Gradients can flow through unimpeded
2. Gates control information flow - Network learns what to remember /forget
3. Additive updates to cell state - Reduces vanishing gradient problem

Training Example

lstm = LSTM(input_dim=1, hidden_dim=100, seq_len=250)

for epoch in range(num_epochs) :
start = np.random.randint(1, 701)
inp = (np.arange(start, start + 250) / 1000).reshape(250, 1, 1)
y_true = np.array([(start + 250) / 1000]) .reshape(1l, 1)

lstm.forward(inp)

y_pred =
= 0.5 * (y_pred - y_true) #*x 2

loss

lstm.backward(y_true, y_pred, 1lr=0.05)

The LSTM can handle much longer sequences (250 timesteps) compared to vanilla RNN (50
timesteps) due to its ability to maintain long-term dependencies.

	Long Short-Term Memory (LSTM)
	Initial Conditions
	LSTM Gates
	Cell State and Hidden State Update
	Output Prediction

	Implementation
	Why LSTM Works Better
	Training Example

