
Feed Forward Neural Network from Scratch

Bhanu Prasanna Koppolu

Table of contents

Feed Forward Neural Network . 3
Network Architecture . 3
Activation Functions . 3
Loss Function . 4
Weight Initialization . 4

Implementation . 4
Backpropagation Details . 6

2

Source Code

Full implementation available at DL_from_scratch/ffn.py

Feed Forward Neural Network

Starting with a feed forward neural network to predict MNIST dataset accurately. The MNIST
consists of images with handwritten numbers from 0 - 9 = 10 classes. Each image is 28×28
size, so 28×28 = 784 pixels.

Network Architecture

I will be building the following network:

1. Input Layer - 784 neurons (flattened image)
2. Hidden Layer 1 - 512 neurons
3. Hidden Layer 2 - 256 neurons
4. Hidden Layer 3 - 128 neurons
5. Output Layer - 10 neurons (Softmax for classification)

Activation Functions

ReLU (Rectified Linear Unit):

ReLU(𝑥) = max(0, 𝑥)

ReLU′(𝑥) = {1 if 𝑥 > 0
0 otherwise

Softmax:

Softmax(𝑥𝑖) = 𝑒𝑥𝑖−max(𝑥)

∑𝑗 𝑒𝑥𝑗−max(𝑥)

3

https://github.com/bhanuprasanna2001/DL_from_scratch

Loss Function

Sparse Categorical Cross-Entropy:

𝐿(𝑦, ̂𝑦) = − log(̂𝑦𝑦𝑡𝑟𝑢𝑒
)

where ̂𝑦𝑦𝑡𝑟𝑢𝑒
is the predicted probability for the true class.

Weight Initialization

Using He initialization for ReLU networks:

𝑊 ∼ 𝒩 (0, √ 2
𝑛𝑖𝑛

)

Implementation

def relu(x):
"""ReLU activation: max(0, x)"""
return np.where(x > 0, x, 0)

def relu_backward(dout, x):
"""Gradient of ReLU: 1 if x > 0, else 0"""
dz = dout.copy()
dz[x <= 0] = 0
return dz

def softmax(x):
"""Softmax with numerical stability"""
exp_x = np.exp(x - np.max(x))
return exp_x / exp_x.sum()

def sparse_categorical_crossentropy(y_true, y_pred):
"""Cross entropy loss for integer labels"""
y_pred = np.clip(y_pred, 1e-15, 1 - 1e-15)
return -np.log(y_pred[y_true])

4

class FFN_MNIST:
"""Feed Forward Neural Network for MNIST classification.

Architecture: 784 -> 512 -> 256 -> 128 -> 10
Activations: ReLU for hidden layers, Softmax for output
"""

def __init__(self, learning_rate=0.01):
He initialization for ReLU networks: std = sqrt(2/n_in)

First hidden layer: 784 -> 512
self.w1 = np.random.randn(784, 512) * np.sqrt(2.0 / 784)
self.b1 = np.zeros(512)

Second hidden layer: 512 -> 256
self.w2 = np.random.randn(512, 256) * np.sqrt(2.0 / 512)
self.b2 = np.zeros(256)

Third hidden layer: 256 -> 128
self.w3 = np.random.randn(256, 128) * np.sqrt(2.0 / 256)
self.b3 = np.zeros(128)

Output layer: 128 -> 10
self.w4 = np.random.randn(128, 10) * np.sqrt(2.0 / 128)
self.b4 = np.zeros(10)

def fit(self, X, y, epochs=10, subset_size=5000):
"""Train the network using SGD.

For each sample:
1. Forward pass to compute predictions
2. Compute loss
3. Backward pass to compute gradients
4. Update weights using gradient descent
"""
...

def _forward(self, X):
"""Forward pass through all layers.

Layer operations:
Z1 = X @ W1 + b1 -> H1 = ReLU(Z1)

5

Z2 = H1 @ W2 + b2 -> H2 = ReLU(Z2)
Z3 = H2 @ W3 + b3 -> H3 = ReLU(Z3)
Z4 = H3 @ W4 + b4 -> out = Softmax(Z4)
"""
...

def _backward(self, X, y_true, y_pred, loss):
"""Backward pass using chain rule.

Gradient flow:
1. dZ4 = y_pred - y_true_onehot (softmax + cross-entropy combined)
2. dW4 = H3.T @ dZ4, dH3 = dZ4 @ W4.T
3. dZ3 = dH3 * ReLU'(Z3), then continue...

Uses outer product for weight gradients when processing
single samples.
"""
...

def _update_grads(self):
"""Update weights using gradient descent.
W = W - lr * dW
"""
...

def predict(self, X):
"""Predict class labels for samples."""
...

def evaluate(self, X, y):
"""Compute accuracy on dataset."""
...

Backpropagation Details

The backward pass computes gradients using the chain rule:

1. Output layer gradient (softmax + cross-entropy combined):

𝜕𝐿
𝜕𝑍4

= ̂𝑦 − 𝑦𝑜𝑛𝑒ℎ𝑜𝑡

6

2. Weight gradients (using outer product for single samples):

𝜕𝐿
𝜕𝑊4

= 𝐻𝑇
3 ⋅ 𝜕𝐿

𝜕𝑍4

3. Hidden layer gradients (propagating through ReLU):

𝜕𝐿
𝜕𝐻3

= 𝜕𝐿
𝜕𝑍4

⋅ 𝑊 𝑇
4

𝜕𝐿
𝜕𝑍3

= 𝜕𝐿
𝜕𝐻3

⊙ ReLU′(𝑍3)

4. Repeat for each layer going backwards through the network.

7

	Feed Forward Neural Network
	Network Architecture
	Activation Functions
	Loss Function
	Weight Initialization

	Implementation
	Backpropagation Details

