
Convolutional Neural Network from Scratch

Bhanu Prasanna Koppolu



Table of contents

Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Core Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pooling vs Batch Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Output Size Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Standard CNN Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2D Convolution Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Activation and Pooling Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Flatten and Dense Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Softmax and Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Training Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2



Source Code

Full implementation available at DL_from_scratch/cnn.py

Convolutional Neural Network

Core Concept

The key concept in CNN is calculating what is sent to the next layer through convolution
operations.

Pooling vs Batch Normalization

Pooling:

• Downsamples spatial dimensions
• Reduces computational cost
• Loses some spatial information

Batch Normalization:

• Normalizes feature distribution using mean and variance
• Preserves spatial dimensions
• Stabilizes training

Output Size Calculation

For convolution and pooling operations:

output_size = ⌊ input + 2 × padding − kernel
stride ⌋ + 1

Example with Pooling:

• Input: (batch=1, channels=32, height=28, width=28)
• MaxPool2d(kernel=2, stride=2)
• Output: (1, 32, 14, 14) → Half the spatial size

ℎ𝑜𝑢𝑡 = 28 + 0 − 2
2 + 1 = 14

3

https://github.com/bhanuprasanna2001/DL_from_scratch


Standard CNN Pattern

Conv -> BatchNorm -> ReLU -> MaxPool (repeat 2-3 times) -> Flatten -> Dense

Implementation

2D Convolution Layer

class CNN2D:
"""2D Convolutional Layer with stride and padding support.

Performs correlation (not true convolution) for forward pass.
"""

def __init__(self,
in_channels=1, # Number of input channels
out_channels=32, # Number of filters
kernel=3, # Kernel size
stride=1, # Stride for sliding
padding=0): # Zero padding

# Xavier initialization
self.weights = np.random.randn(out_channels, in_channels, kernel, kernel) \

* np.sqrt(2.0 / (in_channels * kernel * kernel))
self.bias = np.zeros(out_channels)

def _pad_input(self, X):
"""Apply zero padding to input."""
...

def _correlate2d(self, input_slice, kernel):
"""2D correlation (sliding kernel over input)."""
...

def forward(self, X):
"""Forward pass: apply convolution filters.

For each output channel:
Sum correlation of input channels with corresponding kernels
Add bias

4



"""
...

def backward(self, out_gradient, lr=0.001):
"""Backward pass with gradient computation.

1. If stride > 1, upsample gradient
2. Compute kernel gradients via correlation
3. Compute input gradients via full convolution
4. Update weights and bias
"""
...

Activation and Pooling Layers

class ReLU:
"""ReLU activation: max(0, x)"""

def forward(self, X):
self.input_data = X
return np.maximum(0, X)

def backward(self, out_gradient):
return out_gradient * (self.input_data > 0)

class MaxPool2D:
"""Max Pooling layer for downsampling.

Keeps track of max indices for backward pass.
"""

def __init__(self, pool_size=2, stride=2):
self.pool_size = pool_size
self.stride = stride

def forward(self, X):
"""Select maximum value in each pooling window.
Store indices for backward pass."""
...

5



def backward(self, out_gradient):
"""Route gradients only to max positions."""
...

Flatten and Dense Layers

class Flatten:
"""Flatten spatial dimensions for dense layers."""

def forward(self, X):
self.input_shape = X.shape
return X.reshape(1, -1)

def backward(self, out_gradient):
return out_gradient.reshape(self.input_shape)

class Dense:
"""Fully connected layer."""

def __init__(self, input_size, output_size):
# He initialization
self.weights = np.random.randn(input_size, output_size) \

* np.sqrt(2.0 / input_size)
self.bias = np.zeros(output_size)

def forward(self, X):
"""Linear transformation: Y = XW + b"""
...

def backward(self, out_gradient, lr=0.001):
"""Compute and apply gradients."""
...

Softmax and Loss

class Softmax:
"""Softmax activation for classification."""

6



def forward(self, X):
exp_X = np.exp(X - np.max(X, axis=1, keepdims=True))
self.output = exp_X / np.sum(exp_X, axis=1, keepdims=True)
return self.output

def backward(self, y_true):
# Combined softmax + cross-entropy gradient
return self.output - y_true

def cross_entropy_loss(y_pred, y_true):
"""Cross entropy loss for one-hot encoded labels."""
return -np.sum(y_true * np.log(y_pred + 1e-8)) / y_pred.shape[0]

Model Architecture

# Build CNN model
conv1 = CNN2D(in_channels=1, out_channels=8, kernel=3, stride=1, padding=1)
relu1 = ReLU()
pool1 = MaxPool2D(pool_size=2, stride=2)

conv2 = CNN2D(in_channels=8, out_channels=16, kernel=3, stride=1, padding=1)
relu2 = ReLU()
pool2 = MaxPool2D(pool_size=2, stride=2)

flatten = Flatten()
dense1 = Dense(16 * 7 * 7, 128) # After two 2x2 poolings: 28->14->7
relu3 = ReLU()
dense2 = Dense(128, 10)
softmax = Softmax()

Training Loop

The training loop processes one sample at a time:

1. Forward pass through all layers sequentially
2. Compute loss using cross-entropy
3. Backward pass propagating gradients through all layers in reverse
4. Weights update happens inside each layer’s backward method

7


	Convolutional Neural Network
	Core Concept
	Pooling vs Batch Normalization
	Output Size Calculation
	Standard CNN Pattern

	Implementation
	2D Convolution Layer
	Activation and Pooling Layers
	Flatten and Dense Layers
	Softmax and Loss
	Model Architecture
	Training Loop


