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Source Code

Full implementation available at DL_from_scratch/cnn.py

Convolutional Neural Network

Core Concept

The key concept in CNN is calculating what is sent to the next layer through convolution
operations.

Pooling vs Batch Normalization

Pooling:

• Downsamples spatial dimensions
• Reduces computational cost
• Loses some spatial information

Batch Normalization:

• Normalizes feature distribution using mean and variance
• Preserves spatial dimensions
• Stabilizes training

Output Size Calculation

For convolution and pooling operations:

output_size = ⌊ input + 2 × padding − kernel
stride ⌋ + 1

Example with Pooling:

• Input: (batch=1, channels=32, height=28, width=28)
• MaxPool2d(kernel=2, stride=2)
• Output: (1, 32, 14, 14) → Half the spatial size

ℎ𝑜𝑢𝑡 = 28 + 0 − 2
2 + 1 = 14
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Standard CNN Pattern

Conv -> BatchNorm -> ReLU -> MaxPool (repeat 2-3 times) -> Flatten -> Dense

Implementation

2D Convolution Layer

class CNN2D:
"""2D Convolutional Layer with stride and padding support.

Performs correlation (not true convolution) for forward pass.
"""

def __init__(self,
in_channels=1, # Number of input channels
out_channels=32, # Number of filters
kernel=3, # Kernel size
stride=1, # Stride for sliding
padding=0): # Zero padding

# Xavier initialization
self.weights = np.random.randn(out_channels, in_channels, kernel, kernel) \

* np.sqrt(2.0 / (in_channels * kernel * kernel))
self.bias = np.zeros(out_channels)

def _pad_input(self, X):
"""Apply zero padding to input."""
...

def _correlate2d(self, input_slice, kernel):
"""2D correlation (sliding kernel over input)."""
...

def forward(self, X):
"""Forward pass: apply convolution filters.

For each output channel:
Sum correlation of input channels with corresponding kernels
Add bias
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"""
...

def backward(self, out_gradient, lr=0.001):
"""Backward pass with gradient computation.

1. If stride > 1, upsample gradient
2. Compute kernel gradients via correlation
3. Compute input gradients via full convolution
4. Update weights and bias
"""
...

Activation and Pooling Layers

class ReLU:
"""ReLU activation: max(0, x)"""

def forward(self, X):
self.input_data = X
return np.maximum(0, X)

def backward(self, out_gradient):
return out_gradient * (self.input_data > 0)

class MaxPool2D:
"""Max Pooling layer for downsampling.

Keeps track of max indices for backward pass.
"""

def __init__(self, pool_size=2, stride=2):
self.pool_size = pool_size
self.stride = stride

def forward(self, X):
"""Select maximum value in each pooling window.
Store indices for backward pass."""
...
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def backward(self, out_gradient):
"""Route gradients only to max positions."""
...

Flatten and Dense Layers

class Flatten:
"""Flatten spatial dimensions for dense layers."""

def forward(self, X):
self.input_shape = X.shape
return X.reshape(1, -1)

def backward(self, out_gradient):
return out_gradient.reshape(self.input_shape)

class Dense:
"""Fully connected layer."""

def __init__(self, input_size, output_size):
# He initialization
self.weights = np.random.randn(input_size, output_size) \

* np.sqrt(2.0 / input_size)
self.bias = np.zeros(output_size)

def forward(self, X):
"""Linear transformation: Y = XW + b"""
...

def backward(self, out_gradient, lr=0.001):
"""Compute and apply gradients."""
...

Softmax and Loss

class Softmax:
"""Softmax activation for classification."""
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def forward(self, X):
exp_X = np.exp(X - np.max(X, axis=1, keepdims=True))
self.output = exp_X / np.sum(exp_X, axis=1, keepdims=True)
return self.output

def backward(self, y_true):
# Combined softmax + cross-entropy gradient
return self.output - y_true

def cross_entropy_loss(y_pred, y_true):
"""Cross entropy loss for one-hot encoded labels."""
return -np.sum(y_true * np.log(y_pred + 1e-8)) / y_pred.shape[0]

Model Architecture

# Build CNN model
conv1 = CNN2D(in_channels=1, out_channels=8, kernel=3, stride=1, padding=1)
relu1 = ReLU()
pool1 = MaxPool2D(pool_size=2, stride=2)

conv2 = CNN2D(in_channels=8, out_channels=16, kernel=3, stride=1, padding=1)
relu2 = ReLU()
pool2 = MaxPool2D(pool_size=2, stride=2)

flatten = Flatten()
dense1 = Dense(16 * 7 * 7, 128) # After two 2x2 poolings: 28->14->7
relu3 = ReLU()
dense2 = Dense(128, 10)
softmax = Softmax()

Training Loop

The training loop processes one sample at a time:

1. Forward pass through all layers sequentially
2. Compute loss using cross-entropy
3. Backward pass propagating gradients through all layers in reverse
4. Weights update happens inside each layer’s backward method
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